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Abstract 
 

Viscous damping has long served as a surrogate for the aggregate of non-damage 
dissipative mechanisms. When the seismic response is strongly nonlinear most of the energy is 
dissipated by hysteresis but a question that has lingered is whether the viscous model holds 
unchanged during plasticity. It is shown in this paper that data supported information on this 
question can be obtained by inspecting the rate of change of the base shear over time intervals of 
strong plasticity. The results suggest that the constants that specify the pseudo viscous model 
decrease when hysteretic dissipation is active. 
 

Introduction 
 
A question that arises when the response of buildings to strong earthquakes is evaluated 

is whether the model that is used to capture energy dissipation not associated with damage 
should remain unchanged or be modified when hysteretic behavior is activated (Chopra and 
McKenna 2016, Luco and Lanzi 2017, Lanzi and Luco 2018). This paper attempts to answer this 
question by interrogating data with a scheme that combines constraints from dynamic 
equilibrium with acceleration measurements. The scheme, which we will refer to as the Inherent 
Damping Nonlinear Behavior (IDNB) extractor is built on the idea that during strong nonlinear 
response there may be time intervals in which the derivative of the restoring base shear is small 
enough for the inherent damping (InD) behavior to be ascertained by inspecting the derivative of 
the inertial base shear. As one gathers from the foregoing statement, a requirement for IDNB to 
operate is that one be able to identify time intervals over which significant plastic action is taking 
place and for which the base shear from the restoring mechanism (which cannot be measured) 
has a small derivative. Strong nonlinear behavior does not guarantee the existence of these 
intervals, and it follows from this that IDNB can interrogate some, but not all the nonlinear 
response data sets. It is not difficult to see that a small derivative of the base shear is much more 
likely to be realized in the nonlinear response of buildings with a lateral load resisting system 
formed by moment frames than in those where the bulk of the lateral forces are taken by shear 
walls and for this reason the results later presented are for moment frame buildings. We note that 
that although the exclusion of data sets for shear wall buildings reduces the number nonlinear 
responses available for examination, this does not hinder the ability of IDNB to address the 
central question, namely, whether the empirical data points to coupling or no coupling between 
pseudo-viscosity and hysteresis.  
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This paper begins by outlining the theoretical basis of IDBN and continues by discussing 
issues that arise in the estimation of signals that are needed in the interrogation, but which are not 
measured directly. The criteria used to decide on intervals of strong plasticity where the base 
shear derivative may be adequately small is presented next. The approach developed, together 
with the scheme used to establish the linear damping model are tested in simulations in the next 
section and are shown to be adequately robust. Having established the merit of IDNB in 
simulations the paper moves to the section for which all prior work was carried out, namely, to 
the application of IDNB to strong motion response data sets from real buildings. A section 
commenting on the results obtained closes the paper. 

 
Inherent Damping Nonlinear Behavior (IDNB) Extractor 

 
Under the typical assumptions of finite dimensionality and viscous dissipation, 

equilibrium for base excitation requires that 
 

            ( ) ( ) ( )( ) 0M y t C t u t R t+ + =           (1)  
 
where ( ) 1qy t ×∈ℜ = vector of absolute accelerations, ( ) 1qu t ×∈ℜ = vector of velocities relative to the 
ground, M q q×∈ℜ = symmetric mass matrix, ( ) q qC t ×∈ℜ = symmetric damping matrix, which we 
allow to depend on time, and ( )R t is the vector of restoring forces, with q =number of degrees-
of-freedom in the model that replaces the building for analysis. In our particular case, where 2D 
response is assumed and the inertial coordinates are the horizontal translations of the levels, q is 
the number of floors. For convenience in the analysis that follows we pre-multiply by the inverse 
of the mass and write Eq.1 as 
 
                                                 ( ) ( ) ( )1 1( ) 0y t M C t u t M R t− −+ + =             (2) 

 
We now replace Eq.2 with a scalar equation obtained by pre-multiplying by a vector of 

weights, 1T qr ×∈ℜ , namely 
                                              ( ) ( ) ( )1 1( ) 0T T Tr y t r M C t u t r M R t− −+ + =             (3) 
 

Selecting r so the terms in Eq.3 are (mass normalized) shears in a given story, 
differentiating with respect to time, and introducing obvious notation writes  

 
                                                  ( ) ( ) ( ) 0I D RV t V t V t+ + =    (4) 
 
The most appropriate story level for capturing inelastic behavior is typically level 1, in 

which case r is the usual vector of ones and one can readily see that the derivative of the 
damping term in Eq.4 writes 
 

   ( ) ( )1 ( ) ( ) ( ) ( )T
DV t r M C t u t C t u t−= +               (5) 
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Inspection shows that the second term of Eq.5 is identically zero for invariant damping 
and since one expects this term to be small relative to the first, in general, we neglect it and write 

 
                                                        ( ) 1 ( ) ( )T

DV t r M C t u t−≅              (6) 
Designating the damping matrix for linear behavior as 0C one can also write 

 
                                                           ( ) 1

0( ) ( )T
DV t t r M C u t−= ρ                        (7) 

 
where ( )tρ is a scalar that enforces equality between Eq.6 and Eq.7. Taking 
 
                                                          ( ) ( )1

0 0
T

DV t r M C u t−=                         (8) 
 Eq.7 writes                                                                            
 
             ( ) ( ) 0 ( )D DV t t V t= ρ          (9) 
 
which shows that ( )tρ can be viewed as a scaling of the linear damping that, as far as the story 
shear contribution goes, is equivalent to the (unknown) variation of the coefficients in the 
damping matrix. Substituting Eq.9 into Eq.4 one gets    
 
                                                0 0( ) ( ) ( ) ( ) 0I D D RV t t V t V V t+ + + =  ρ ρ                                   (10) 
 
 On the premise that during any significant inelastic excursion the distribution of plastic 
hinges is not changing much it appears reasonable to take the modulation as constant. With this 
assumption and t as any time segment of significant inelasticity one can write  
 
                                                  0( ) ( ) ( ) 0I D RV t V t V t+ + ≅    ρ                     (11) 
 
where ρ  is the average modulation during the excursion. Assume, temporarily, that t has been 
selected. If estimates of all the signals in Eq.11 were available, one could use the equation to 
solve for the mean modulation, but this appears impeded by the fact that RV  is given by 
 

                                                        
1

( ) ( )
q

R
R

dVV t u t
du=

=∑ 
 

                                                  (12) 

 
and the fact that the partial derivatives in Eq.12 cannot be estimated from available 
measurements. It is possible to move forward, however, by noting that RV may be sufficiently 
small (in relative terms) during t  so that an estimation of the modulation obtained as  
 
                                                           ( )                                           arg min , t= 

ρ
ρ χ ρ (13) 

where  
                                                 ( ) 0, ( ) ( )I Dt V t V t= +   χ ρ ρ                                             (14)  
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may be reasonable. While one expects the average modulation in any given cycle to depend on 
the plastic hinge distribution, identification of modulations for specific yielding excursions is not 
a data-driven attainable goal so we settle for taking t as a vector containing all the time stations 
that one can, with reasonable confidence, assign to yielding excursions. The ρ obtained in this 
manner is then an average of sorts of the values that hold during the time stations in t . It’s 
opportune to note that once a t vector is formed the answer to the minimization in Eq.13 follows 
readily as  
 

                                                           0

0 0

( ) ( )
( ) ( )

T
D I

T
D D

V t V t
V t V t

= −
  

  
ρ                                (15) 

 
We close this outline of IDNB by listing the expressions that, in Eq.11, are to be 

estimated from data, namely 
                                                         ( ) ( )T

IV t r y t=           (16)                                

                                                           ( ) ( )1
0 0

T
DV t r M C u t−=                       (17) 

 
On the Selection of t  

 
One gathers from the previous section that t is made up of time stations that belong to 

yielding excursions that have small RV values. Since RV cannot be estimated using Eq.12, we 
estimate it, instead, using Eq.11 for a set of ρ values that cover the feasible range and turn the 
problem into deciding which one of the estimates is “best”. The idea is to extract time stations 
that are likely to be part of yielding excursions, for each trial modulation, and then select the 
modulation that maximizes the duration of t . To illustrate let the jth value of the possible 
modulations be ( )R jρ . With this notation one has, from Eq.11 
 
 0( ) ( )j

R I R DV t V j V= +ρ    (18)  
designating 
 ( )1 max ( )j j

RM V t=   (19) 

and 

 1 1
1

j
Rj

t

V
Z all values of t tol

M
= ≤


 (20)   

 with 1tol being a small fraction (to be decided on) one gets a set of stations that have small values
of RV . These stations, however, are not all contained in yielding excursions because the set 
includes also time stations that are in the vicinity of elastic unloading. Those that are connected 
to elastic unloading can be eliminated from the set by keeping only time stations for which the 
curvature of the restoring base shear is also small. To do so we take 
 
                                                                 ( )2 max ( )j j

RM V t=           (21) 

obtain 
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                                                           2 2
2

j
Rj

j

V
Z all values of t tol

M
= ≤


         (22) 

where 2tol is also a small fraction and reduce the set to 1 2
j jZ Z∩ . As a final requirement we 

compute 

3 3
3

IV
Z all values of t tol

M
= ≥          (23) 

where 
   ( )3 max ( )IM V t=           (24) 

where 3tol is a substantial fraction and take the stations for the trial value of the modulation 
considered as  
 ( )4 1 2 3

jZ Z Z Z= ∩ ∩  (25) 
 

For the tolerances previously introduced we take, based on judgement and with some 
help from simulations, 1 2 3, , 0.05,0.3,0.5tol tol tol = . Although it may that a time station that 
satisfies all the constraints has no neighbors (given the sampling rate) we decided to add the 
conservative requirement that only time stations that have neighbors remain in 4

jZ , e.g., if one 
has { }4 120,121,122,300,410,411,514jZ = the final set retained is { }5 120,121,122,410,411jZ = . At the end 
of the process described one has one set of stations in 5Z for each trial modulation. The final set, 
which defines t , is taken as the one that has the largest number of stations, and in case there is a 
tie between 2 or more, as the set that leads to the smallest value of the metric in Eq.14. 
 
Reconstruction of Acceleration at Unmeasured Floors 

 
Both Eqs.16 and 17 refer to accelerations at all levels of the building and since only some 

levels are measured the others have to be reconstructed. Much has been done in the area of 
response reconstruction and a suite of techniques that include some data-driven and some model-
assisted ones of various levels of refinement are available (Kalman 1960; Hernandez and Bernal 
2008; Bernal and Nasseri 2009a). Data-driven interpolators, which is the way we operate in this 
work, postulate a basis defined at all points of interest and (typically) solve for the generalized 
amplitudes by requiring that the product of the basis times these amplitudes match the 
measurements.  

 
The reconstruction basis can be selected in different ways. One can, for example, expand 

eigenvectors identified at the sensors or expand some of the left side singular vectors of a data 
matrix (a matrix that lists measurements as its rows) or, quite conveniently, since no explicit 
expansion computations are involved, take the basis that a cubic spline interpolation implicitly 
selects. No matter how the basis is selected, however, the calculation of the generalized 
coordinates is key, and to discuss it we let q =# of levels in the building, ( 1) 1qy + ×∈ℜ is the (albeit 
unknown except at sensor locations) response, including the ground, and ( 1) ( 1)q q+ × +Ψ∈ℜ   is an 
invertible matrix. With these definitions one can write 
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 y Y= Ψ  (26) 
or, in column partition form  

 [ ] 1
1 2

2

Y
y

Y
 

=  
 

ψ ψ  (27) 

which is the same as 
       1 1 2 2y Y Y= +ψ ψ          (28) 

 
pre-multiplying Eq.28 by a diagonal row selector matrix m mS ×∈ℜ  that takes the measurements 
writes 

    1 1 2 2my S Y S Y= +ψ ψ           (29) 
 
where my are the measured coordinate. From Eq.29 one has 
 

            ( ) ( )1
1 1 2 2mY S y S Y−= −ψ ψ         (30) 

 
To make 1Y unique it is customary to take ( )1

1
q m+ ×∈ℜψ so that 1Sψ is square. Combining 

Eqs.30 and 29 writes 
( ) ( )1

1 1 2 2 2 2my S y S Y Y−= − +ψ ψ ψ ψ         (31) 
 

The reconstruction that is consistent with the part of the measured response that projects 
on 1ψ is thus 
                                                  ( ) ( )1

1 1 2 2my S y S Y−= − ψ ψ ψ         (32) 
 
which, of course, cannot be computed exactly because the second term in the parenthesis is not 
known. What is typically done in practice is to take the reconstruction as ( ) 1

1 1 my S y−= ψ ψ which, 
as Eq.32 makes clear, projects response that belongs in 2ψ unto 1ψ . An improvement over this 
approach is to approximate the term in the parenthesis in Eq.32 by the measurements after they 
are filtered to the bandwidth covered by the 1-subspace. Referring to the low pass filtered 
version of the measurements as mFy , namely  

( )2 2mF my y S Y≅ − ψ          (33) 
 
the final reconstruction expression writes 
 

( ) 1
1 1 mFy S y−= ψ ψ           (34) 

 
In the numerical work we take 1ψ as the cubic spline basis for m measurements (Bernal 

and Nasseri 2009b). 
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Estimation of 1
0M C−  

 
A very simple approach to estimate 1

0M C− is to accept the approximation offered by 
mass proportional damping, in which case one has 

 
       1

0M C I− = α ⋅           (35) 
 
where α  is given by 
 2α = ω ξ   (36) 
 
with ωand ξ being the radial frequency and the fraction of critical damping of the mode whose 
damping one decides to specify, typically the fundamental mode in the case of buildings.  
 
A Data Consistent Approach 
 

The approach described next is developed using accelerations velocities and 
displacements at all the coordinates and, as a consequence, carries approximation from the signal 
processing needed to obtain velocities and displacements from accelerations and from the fact 
that the accelerations at unmeasured floors are reconstructed. The last item limits the rank of the 
estimated damping to the number of measurements and although there are q m− undamped 
deformation patterns these have little effect on the performance of IDNB as they essentially span 
the higher modes. We begin by writing the dynamic equilibrium for base excitation on the 
premise of linear behavior, namely 
 
                                                     1 1

0 0y M C u M Ku− −+ + =                                              (37) 
 
and proceed by defining data matrices where each column is a time station, over p-time stations 
that need not be sequential, namely 
 
         1 2 1 2 1 2p p pY y y y U u u u U u u u     = = =     

                     (38) 
 
and, using Eq.37 write 
 
                                                           1 1

0 0Y M C U M KU− −+ + =           (39) 
 

Since the index p  can be taken large compared to the number of floors the data matrices 
in Eq.38 can be made wide, and since all wide matrices have a right null space, it is always 
possible to find a matrix Z such that 
                                                                  0UZ =                                                            (40) 
 

Post-multiplying Eq.39 by Z one gets 
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                                                               1
0M C B− ϒ =                                                      (41) 

where 
                                                                            B YZ= −            (42) 
and 
                                                                  UZϒ =                                                             (43) 
 

One can solve Eq.41 in a least square sense for 1
0M C− but this option does not enforce the 

symmetry constrain that holds in most instances (since the mass matrix is usually proportional to 
the identity). One can enforce the constraint by operating with a solution format offered by the 
well-known property of the Kronecker product that allows one to write 
 
                                                 ( ) ( ) ( )1

0
T I vec M C vec B−ϒ ⊗ =                                       (44) 

 
where ⊗ =Kronecker product and ( )vec  is the vectorization operator, which creates a vector by 
stacking the columns of a matrix from left to right (Kaylath 1990). The symmetry of 1

0M C−  can 
be enforced by adding the columns corresponding to symmetric coefficients in the matrix of the 
lhs and solving for the unique coefficients or by adding the symmetry constraint equation and 
solving the larger system. We here opt for the second scheme and thus write the symmetry 
constraints as 
 
              ( )1

0 0S vec M C−⋅ =          (45) 

where 1 1r cS ×∈ℜ is a matrix where each row contains two non-zero values (1 and -1) and where 
( )1 0.5 1r q q= −  and 2

2r q= , combining Eq.44 and 45 one gets 
 

                                                         
( ) ( ) ( )1

0 0

T I vec B
vec M C

S
−

 ϒ ⊗  
=   
   

        (46) 

 
Under the presence of noise and errors from reconstruction there is no guarantee that all 

the eigenvalues of the matrix in Eq.46 are positive. Small negative eigenvalues are of no 
consequence but can be eliminated, if deemed appropriate, by performing a spectral 
decomposition of 1

0M C− , replacing the negative eigenvalues with zeros and reassembling back.  
 
InD Nonlinear Models 

 
When  IDNB is implemented errors come from a number of sources, namely: 1) the 

modulation is not necessarily constant during inelastic excursions, 2) there is error in the 
reconstruction of unmeasured levels, 3) there is error in the numerical differentiation of the 
absolute accelerations, 4) 1

0M C− is computed using reconstructed data and is thus approximate, 
5) estimation of the time stations that belong to t involves thresholds that require judgement and, 
most importantly, 6) the result is conditional on ( )RV t   being sufficiently small, which may or 
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may not be true for a given data set. Since the correct answers are not known when data from 
real buildings are considered, an appreciation of how IDNB performs can only be gained in 
simulations, and for this one has to decide on a nonlinear damping model. A brief review of 
some previously postulated models is presented next, and we conclude by describing the one that 
will be used in the numerical studies. The most widely used nonlinear model is a generalization 
of standard Rayleigh damping where C is taken as 

 
                                              TC M K= +α β                                                                   (47) 

 
withα  and β as constants and TK  = tangent stiffness matrix. Motivated by the perception that 
damping forces during significant nonlinear response appear too large, Hall introduced (Hall 
2006) a model that has been designated as the capped model, the recommended limit on the 
damping force in this model is twice the damping ratio time the yield level. In 2017 Luco and 
Lanzi introduced a model where the damping matrix is taken as 
 

                                                 1
0 TC C K K−=                                  (48) 

 
where C0 is any arbitrary damping matrix and K  is the initial stiffness. Shortly after the 
appearance of the model in Eq.48 the same authors propose a modification that writes 
 

                                            1 1
0T TC K K C K K− −=                                 (49) 

 
which removes the lack of symmetry of Eq.48 and eliminates the possibility of negative 
eigenvalues. The last observation coming from the fact that the matrix in Eq.49 is a congruent 
transformation of 0C  and congruent transformations do not change the number of positive, 
negative and zero eigenvalues of a matrix. A feature common to all the previous models is that 
they cannot be modified in the plastic range without changing behavior when the response is 
linear. A model that has this ability is the CSMIPκ model, introduced in Bernal (2023) where the 
damping matrix is taken as 

                                                               0
TK

C C
K

 
=   
 

κ

                                           (50) 

where 0C  is arbitrary, κ is a free parameter and  stands for the 2-norm. As can be seen, when 
0κ =  the model reverts to a constant damping matrix and as κ increases the magnitude of the 

reduction in the InD during the inelastic response increases.  
 
The Nuclear Norm Ratio Model (NNRM) 
 

The nuclear norm ratio model has the same form as Eq.42 with the only difference being 
that the 2-norm, which is the largest singular value, is replaced by the nuclear norm, which is the 
sum of all the singular values. Although we do not know from data that the nuclear norm is a 
better choice than the 2-norm, qualitative reasoning suggests that this may be so since this norm 
is less dependent on the spatial distribution of the plasticity. The expression in this case writes 
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*
0

*

TK
C C

K
 

=   
 

κ

          (51) 

 
where *

 stands for the sum of the singular values. The simulations carried out in the numerical 
section use Eq.51 to model the inherent damping. 
 
Numerical Validation 

 
We begin by considering a SDOF system to illustrate how failure to satisfy the 

assumption that the base shear is flat during t affects the IDNB predictions. In this example we 
do not use Eq.51 but simply take 1ρ = during linear response and 0.5ρ = when the system is 
yielding, Furthermore, since there is no error from response reconstruction the tolerances used 
when selecting t can be set more tightly than for buildings and we thus take them as (0.01, 0.05 
and 0.9).  The SDOF chosen has a fundamental period of 1 sec and 5% damping when the 
response is linear. The restoring force vs relative displacement when the strain hardening slope is 
zero is depicted in Figure 1a and comparison between the IDNB identified modulation and the 
exact value is plotted in Figure 1b as the strain hardening increases. As can be seen, IDNB 
underpredicts ρ as hardening increases but the result is qualitatively acceptable throughout.  

 

            
Figure1. a) Force vs displacement during the response for the case of no strain hardening b) 
IDNB modulation prediction vs strain hardening (excitation is the record from channel 1 of 
CSMIP station 24386 during Northridge). 

 
Results from IDNB on real buildings 

 
Data from 6 buildings taken from the CSMIP database are used to determine the 

likelihood of coupling between pseudo-viscosity and hysteresis. As noted in the introduction, all 
the buildings have lateral forces resisting systems made up by moment frames. To accept a 
predicted modulation from IDNB we required that the result be stable with respect to 10% 
perturbations on the tolerances (around their selected nominal values of (0.05,0.3,0.5) and that 
the vector t contain stations from no less than two disjointed time intervals. These criteria were 
satisfied in 4 of the buildings selected but in station 57562, t = ∅ until 1tol  was increase to 0.1 and 
in 12299 there was only one nonlinear excursion until 1tol was increased to 0.10. Table 1 lists the 
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CSMIP station #, the earthquake that generated the response treated as potentially nonlinear, the 
maximum recorded acceleration in the direction of analysis, the central 90% of the Arias 
intensity duration (Arias 1970), information on how the linear response used to compute the 
reference damping was obtained and the value of the modulation obtained when IDNB was used 
to interrogate the data. The plots from where the modulations noted are the minima are depicted 
in Figure 2. 

 
Table 1. Information on Buildings and Modulation 

 
Station 

 
Earthquake 

Channels psa1 
0.9t  

InD for linear 
response 

computed using 

Lateral Load 
Resisting 
System 

Modulation 
ρ  

 
24322 

Northridge 11,8,5,2 (0.865g) 
8.54sec 

 
Landers92 

Concrete 
Frames 

0.22 

 
57562 

 
LomaPrieta 

2,5,8 (0.579g) 
10.7sec 

last 32 secs of 
the motion in 

column#2 

Steel 
Frames 

0.692 

 
12299 

 
PalmSprings86 

1,3,12,11,10 (0.445g) 
11.2 sec 

Last 24 secs of 
the motion in 

column#2 

Steel 
Frames 

0.172 

 
24231 

 
Northridge 

3,5,8,11 (0.448g) 
11.8sec 

 
Whittier87 

Steel 
Frames 

0.49 

 
24386 

 
Northridge 

13,12,11,10,9 (0.578g) 
12.1sec 

 
BigBear92 

Concrete 
Frames 

0.66 

 
24464 

 
Northridge 

14,13,12,11,10 (0.312g) 
13.54sec 

 
Whittier87 

Concrete 
Frames 

0.61 

1peak acceleration recorded on the channels used 
2 1tol relaxed to 0.1 

                   
Figure 2. Normalized IDNB metric versus modulation for the cases in Table1. 

 
Concluding Observations 

 
The results in Table 1 support the contention that the non-hysteretic related dissipation 

that takes place during plastic excursions is less than the value that an invariant pseudo-viscosity 
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model predicts. This result is consistent with the standard framework were damping ratios are 
assigned reasonable invariance within a structural type and material and the damping constants 
follow. Specifically, from this perspective one expects that the effectiveness of the pseudo-
viscosity will decrease when the structure softens as a result of inelastic action, and this is what 
IDNB identifies. Accepting that there is a decrease in the pseudo-viscosity in the nonlinear case 
the question that opens up is how this should be handled in practice. While we have not done any 
systematic examination at the time or writing, our position (at this point) is that an approach that 
allows use of existing nonlinear codes without modification is likely justified. Specifically, it 
may be that it will be sufficient to state that if for linear analysis the viscous model is set up 
based on critical damping ratios equal to X% then for nonlinear time history analysis one should 
use some fraction (to be determined) of X. 
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