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Abstract

Viscous damping has long served as a surrogate for the aggregate of non-damage
dissipative mechanisms. When the seismic response is strongly nonlinear most of the energy is
dissipated by hysteresis but a question that has lingered is whether the viscous model holds
unchanged during plasticity. It is shown in this paper that data supported information on this
question can be obtained by inspecting the rate of change of the base shear over time intervals of
strong plasticity. The results suggest that the constants that specify the pseudo viscous model
decrease when hysteretic dissipation is active.

Introduction

A question that arises when the response of buildings to strong earthquakes is evaluated
is whether the model that is used to capture energy dissipation not associated with damage
should remain unchanged or be modified when hysteretic behavior is activated (Chopra and
McKenna 2016, Luco and Lanzi 2017, Lanzi and Luco 2018). This paper attempts to answer this
question by interrogating data with a scheme that combines constraints from dynamic
equilibrium with acceleration measurements. The scheme, which we will refer to as the Inherent
Damping Nonlinear Behavior (IDNB) extractor is built on the idea that during strong nonlinear
response there may be time intervals in which the derivative of the restoring base shear is small
enough for the inherent damping (InD) behavior to be ascertained by inspecting the derivative of
the inertial base shear. As one gathers from the foregoing statement, a requirement for IDNB to
operate is that one be able to identify time intervals over which significant plastic action is taking
place and for which the base shear from the restoring mechanism (which cannot be measured)
has a small derivative. Strong nonlinear behavior does not guarantee the existence of these
intervals, and it follows from this that IDNB can interrogate some, but not all the nonlinear
response data sets. It is not difficult to see that a small derivative of the base shear is much more
likely to be realized in the nonlinear response of buildings with a lateral load resisting system
formed by moment frames than in those where the bulk of the lateral forces are taken by shear
walls and for this reason the results later presented are for moment frame buildings. We note that
that although the exclusion of data sets for shear wall buildings reduces the number nonlinear
responses available for examination, this does not hinder the ability of IDNB to address the
central question, namely, whether the empirical data points to coupling or no coupling between
pseudo-viscosity and hysteresis.
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This paper begins by outlining the theoretical basis of IDBN and continues by discussing
issues that arise in the estimation of signals that are needed in the interrogation, but which are not
measured directly. The criteria used to decide on intervals of strong plasticity where the base
shear derivative may be adequately small is presented next. The approach developed, together
with the scheme used to establish the linear damping model are tested in simulations in the next
section and are shown to be adequately robust. Having established the merit of IDNB in
simulations the paper moves to the section for which all prior work was carried out, namely, to
the application of IDNB to strong motion response data sets from real buildings. A section
commenting on the results obtained closes the paper.

Inherent Damping Nonlinear Behavior (IDNB) Extractor

Under the typical assumptions of finite dimensionality and viscous dissipation,
equilibrium for base excitation requires that

M 3(t)+C0)i(1)+R(1)=0 (1)

where () e R”' = vector of absolute accelerations, u(t)e R = vector of velocities relative to the
ground, M e R™ = symmetric mass matrix, C(t)e R = symmetric damping matrix, which we
allow to depend on time, and R(¢) is the vector of restoring forces, with ¢ =number of degrees-

of-freedom in the model that replaces the building for analysis. In our particular case, where 2D
response is assumed and the inertial coordinates are the horizontal translations of the levels, g is

the number of floors. For convenience in the analysis that follows we pre-multiply by the inverse
of the mass and write Eq.1 as

P(t)+MCeyi(t)+M'R(t)=0 (2)

We now replace Eq.2 with a scalar equation obtained by pre-multiplying by a vector of
weights, 7" € R™, namely
rP () +r' M C@yi(t)+r"M'R(£) =0 3)

Selecting rso the terms in Eq.3 are (mass normalized) shears in a given story,
differentiating with respect to time, and introducing obvious notation writes

Vi) +V,(0+V(6)=0 (4)
The most appropriate story level for capturing inelastic behavior is typically level 1, in
which case ris the usual vector of ones and one can readily see that the derivative of the

damping term in Eq.4 writes

Vo (£) ="M~ (Cii(r) + C(eyi(r)) (5)
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Inspection shows that the second term of Eq.5 is identically zero for invariant damping
and since one expects this term to be small relative to the first, in general, we neglect it and write

V,(t)=r" M~ C(0)ii(t) (6)
Designating the damping matrix for linear behavior as C, one can also write
V, (t)= p(t)r" M™'Cyii(t) (7)
where p(¢)is a scalar that enforces equality between Eq.6 and Eq.7. Taking

Vo (£)=r M Cyii (1) (8)
Eq.7 writes

Vo (t):p(t)Vno(t) (9)

which shows thatp(s) can be viewed as a scaling of the linear damping that, as far as the story

shear contribution goes, is equivalent to the (unknown) variation of the coefficients in the
damping matrix. Substituting Eq.9 into Eq.4 one gets

V() + Wy + p(t)V o + V(1) =0 (10)

On the premise that during any significant inelastic excursion the distribution of plastic
hinges is not changing much it appears reasonable to take the modulation as constant. With this
assumption and 7 as any time segment of significant inelasticity one can write

V@) + P Voo (D) +V, ()= 0 (11)

where p is the average modulation during the excursion. Assume, temporarily, that 7 has been

selected. If estimates of all the signals in Eq.11 were available, one could use the equation to
solve for the mean modulation, but this appears impeded by the fact that 7, is given by

i, () (12)

, < dv
V.(t) =

and the fact that the partial derivatives in Eq.12 cannot be estimated from available
measurements. It is possible to move forward, however, by noting that ¥, may be sufficiently

small (in relative terms) during 7 so that an estimation of the modulation obtained as

ﬁ:argmin”;((p,f)” (13)
P

where
2(pE) =]V, @)+ pVe (D) (14)
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may be reasonable. While one expects the average modulation in any given cycle to depend on
the plastic hinge distribution, identification of modulations for specific yielding excursions is not
a data-driven attainable goal so we settle for taking 7 as a vector containing all the time stations
that one can, with reasonable confidence, assign to yielding excursions. The p obtained in this
manner is then an average of sorts of the values that hold during the time stations in 7 . It’s
opportune to note that once a 7 vector is formed the answer to the minimization in Eq.13 follows
readily as

VOV (@)

Voo (Wi (F) (1)

I

We close this outline of IDNB by listing the expressions that, in Eq.11, are to be
estimated from data, namely

V,(t)=r"5(¢) (16)
Voo (£) =r"M ' Cyii(1) (17)

On the Selection of 7

One gathers from the previous section that 7 is made up of time stations that belong to
yielding excursions that have small¥, values. Since ¥, cannot be estimated using Eq.12, we
estimate it, instead, using Eq.11 for a set of p values that cover the feasible range and turn the
problem into deciding which one of the estimates is “best”. The idea is to extract time stations
that are likely to be part of yielding excursions, for each trial modulation, and then select the
modulation that maximizes the duration of 7 . To illustrate let the j" value of the possible
modulations be p, (). With this notation one has, from Eq.11

Vi@ =V, +pp (/W (18)
designating
M/ = max(|V1{ (t)|) (19)
and
< d
Z/ = allvalues oft|v <tol, (20)
1

with tol being a small fraction (to be decided on) one gets a set of stations that have small values
of 7, . These stations, however, are not all contained in yielding excursions because the set

includes also time stations that are in the vicinity of elastic unloading. Those that are connected
to elastic unloading can be eliminated from the set by keeping only time stations for which the
curvature of the restoring base shear is also small. To do so we take

M] :max(|I7R’(t)|) (21)

obtain
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i

— <tol, (22)
M2

where fol,1s also a small fraction and reduce the set toz/ ~nz/. As a final requirement we

Z] = allvalues 0ft|

compute
Z, =allvalues of t||AV4—[| > tol, (23)
3
where
M, = max(|V, (r)|) (24)

where tol,1s a substantial fraction and take the stations for the trial value of the modulation

considered as
Z]=(Z,nZ,)"Z, (25)

For the tolerances previously introduced we take, based on judgement and with some
help from simulations, fol,,t0l,,tol, =0.05,0.3,0.5. Although it may that a time station that

satisfies all the constraints has no neighbors (given the sampling rate) we decided to add the
conservative requirement that only time stations that have neighbors remain in z/, e.g., if one

has 7] ={120,121,122,300,410,411,514} the final set retained is Z/ ={120,121,122,410,411} . At the end
of the process described one has one set of stations in Z, for each trial modulation. The final set,

which defines 7, is taken as the one that has the largest number of stations, and in case there is a
tie between 2 or more, as the set that leads to the smallest value of the metric in Eq.14.

Reconstruction of Acceleration at Unmeasured Floors

Both Eqgs.16 and 17 refer to accelerations at all levels of the building and since only some
levels are measured the others have to be reconstructed. Much has been done in the area of
response reconstruction and a suite of techniques that include some data-driven and some model-
assisted ones of various levels of refinement are available (Kalman 1960; Hernandez and Bernal
2008; Bernal and Nasseri 2009a). Data-driven interpolators, which is the way we operate in this
work, postulate a basis defined at all points of interest and (typically) solve for the generalized
amplitudes by requiring that the product of the basis times these amplitudes match the
measurements.

The reconstruction basis can be selected in different ways. One can, for example, expand
eigenvectors identified at the sensors or expand some of the left side singular vectors of a data
matrix (a matrix that lists measurements as its rows) or, quite conveniently, since no explicit
expansion computations are involved, take the basis that a cubic spline interpolation implicitly
selects. No matter how the basis is selected, however, the calculation of the generalized
coordinates is key, and to discuss it we letg =# of levels in the building, y € R‘“*'is the (albeit

unknown except at sensor locations) response, including the ground, and ¥ € RV is an
invertible matrix. With these definitions one can write
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y=vYY (26)
or, in column partition form

Y
y:[‘//l Wz]{y} (27)

which is the same as
y=yh+y,, (28)

pre-multiplying Eq.28 by a diagonal row selector matrix S e®R™" that takes the measurements
writes

Vo =S Y+ 8,7, (29)

where y, are the measured coordinate. From Eq.29 one has

Y, =(Sy,) " (3, —SyoY,) (30)

(q+1)x

To make Y, unique it is customary to take ¥, € R'""" so that Sy, is square. Combining

Eqs.30 and 29 writes
y=v(Sy,) (3, = Sw. 1)+, (31)

The reconstruction that is consistent with the part of the measured response that projects
on y,is thus

AN NCENAS (32)

which, of course, cannot be computed exactly because the second term in the parenthesis is not
known. What is typically done in practice is to take the reconstruction as y =y, (St//1 )7l v, wWhich,
as Eq.32 makes clear, projects response that belongs in y, unto y,. An improvement over this

approach is to approximate the term in the parenthesis in Eq.32 by the measurements after they
are filtered to the bandwidth covered by the 1-subspace. Referring to the low pass filtered
version of the measurements as y, ., namely

Yur E(ym_S‘//zYz) (33)

the final reconstruction expression writes

=, (Sv,) " Yor (34)

In the numerical work we take i/, as the cubic spline basis for m measurements (Bernal
and Nasseri 2009b).
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Estimation of M 'C,

A very simple approach to estimate M ~'C, is to accept the approximation offered by
mass proportional damping, in which case one has

M'Cy=a-1 (35)

where o is given by
=20, (36)

with wand ¢ being the radial frequency and the fraction of critical damping of the mode whose
damping one decides to specify, typically the fundamental mode in the case of buildings.

A Data Consistent Approach

The approach described next is developed using accelerations velocities and
displacements at all the coordinates and, as a consequence, carries approximation from the signal
processing needed to obtain velocities and displacements from accelerations and from the fact
that the accelerations at unmeasured floors are reconstructed. The last item limits the rank of the
estimated damping to the number of measurements and although there are ¢ —m undamped

deformation patterns these have little effect on the performance of IDNB as they essentially span
the higher modes. We begin by writing the dynamic equilibrium for base excitation on the
premise of linear behavior, namely

V+M'Cpi+ M ' Ku=0 37

and proceed by defining data matrices where each column is a time station, over p-time stations
that need not be sequential, namely

=[5 3 .. ¥, U=[i, i, .. i,] Us[u, u, .. u,] (38)
and, using Eq.37 write
Y+M'CU+M'KU =0 (39)
Since the index p can be taken large compared to the number of floors the data matrices
in Eq.38 can be made wide, and since all wide matrices have a right null space, it is always

possible to find a matrix Z such that
UZ =0 (40)

Post-multiplying Eq.39 by Z one gets
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M'C,Y=B (41)
where
B=-YZ (42)
and
Y=Uz (43)

One can solve Eq.41 in a least square sense for M ~'C, but this option does not enforce the

symmetry constrain that holds in most instances (since the mass matrix is usually proportional to
the identity). One can enforce the constraint by operating with a solution format offered by the
well-known property of the Kronecker product that allows one to write

(YT ®I)vec(M_1C0)=vec(B) (44)

where ® =Kronecker product and vec (L) is the vectorization operator, which creates a vector by

stacking the columns of a matrix from left to right (Kaylath 1990). The symmetry of M 'C, can

be enforced by adding the columns corresponding to symmetric coefficients in the matrix of the
lhs and solving for the unique coefficients or by adding the symmetry constraint equation and
solving the larger system. We here opt for the second scheme and thus write the symmetry
constraints as

S-vec(MflCo):O (45)

where S € R is a matrix where each row contains two non-zero values (1 and -1) and where
1 =05¢(q—1) and r, = g’ , combining Eq.44 and 45 one gets

(7" @ 1)}60 (1c)- {vec(B)} 46)

S 0

Under the presence of noise and errors from reconstruction there is no guarantee that all
the eigenvalues of the matrix in Eq.46 are positive. Small negative eigenvalues are of no
consequence but can be eliminated, if deemed appropriate, by performing a spectral

decomposition of M ~'C, , replacing the negative eigenvalues with zeros and reassembling back.

InD Nonlinear Models

When IDNB is implemented errors come from a number of sources, namely: 1) the
modulation is not necessarily constant during inelastic excursions, 2) there is error in the
reconstruction of unmeasured levels, 3) there is error in the numerical differentiation of the
absolute accelerations, 4) M 'C, is computed using reconstructed data and is thus approximate,
5) estimation of the time stations that belong to 7 involves thresholds that require judgement and,
most importantly, 6) the result is conditional on ¥, (7) being sufficiently small, which may or
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may not be true for a given data set. Since the correct answers are not known when data from
real buildings are considered, an appreciation of how IDNB performs can only be gained in
simulations, and for this one has to decide on a nonlinear damping model. A brief review of
some previously postulated models is presented next, and we conclude by describing the one that
will be used in the numerical studies. The most widely used nonlinear model is a generalization
of standard Rayleigh damping where C is taken as

C=aM +pK, (47)

witha and g as constants and K, = tangent stiffness matrix. Motivated by the perception that

damping forces during significant nonlinear response appear too large, Hall introduced (Hall
2006) a model that has been designated as the capped model, the recommended limit on the
damping force in this model is twice the damping ratio time the yield level. In 2017 Luco and
Lanzi introduced a model where the damping matrix is taken as

C=C,K 'K, (48)

where Co is any arbitrary damping matrix and K is the initial stiffness. Shortly after the
appearance of the model in Eq.48 the same authors propose a modification that writes

C=K,K"'C,K'K, (49)

which removes the lack of symmetry of Eq.48 and eliminates the possibility of negative
eigenvalues. The last observation coming from the fact that the matrix in Eq.49 is a congruent
transformation of C, and congruent transformations do not change the number of positive,

negative and zero eigenvalues of a matrix. A feature common to all the previous models is that
they cannot be modified in the plastic range without changing behavior when the response is
linear. A model that has this ability is the CSMIP«k model, introduced in Bernal (2023) where the

damping matrix is taken as
C= [M] G, (50)

where C, is arbitrary, x'is a free parameter and ||[" stands for the 2-norm. As can be seen, when

x =0 the model reverts to a constant damping matrix and as x increases the magnitude of the
reduction in the InD during the inelastic response increases.

The Nuclear Norm Ratio Model (NNRM)

The nuclear norm ratio model has the same form as Eq.42 with the only difference being
that the 2-norm, which is the largest singular value, is replaced by the nuclear norm, which is the
sum of all the singular values. Although we do not know from data that the nuclear norm is a
better choice than the 2-norm, qualitative reasoning suggests that this may be so since this norm
is less dependent on the spatial distribution of the plasticity. The expression in this case writes
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C= (”KT
[&

. stands for the sum of the singular values. The simulations carried out in the numerical

] C, (51)

*

where

:

section use Eq.51 to model the inherent damping.

Numerical Validation

We begin by considering a SDOF system to illustrate how failure to satisfy the
assumption that the base shear is flat during 7 affects the IDNB predictions. In this example we
do not use Eq.51 but simply take p =1during linear response and p = 0.5 when the system is

yielding, Furthermore, since there is no error from response reconstruction the tolerances used
when selecting 7 can be set more tightly than for buildings and we thus take them as (0.01, 0.05
and 0.9). The SDOF chosen has a fundamental period of 1 sec and 5% damping when the
response is linear. The restoring force vs relative displacement when the strain hardening slope is
zero is depicted in Figure 1a and comparison between the IDNB identified modulation and the
exact value is plotted in Figure 1b as the strain hardening increases. As can be seen, IDNB
underpredicts p as hardening increases but the result is qualitatively acceptable throughout.

0.6
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IDNB computed

02 |

normalized force
modulation

-2 -1 0 1 2 0 5 10 15 20

normalized displacement strain hardening %

Figurel. a) Force vs displacement during the response for the case of no strain hardening b)
IDNB modulation prediction vs strain hardening (excitation is the record from channel 1 of
CSMIP station 24386 during Northridge).

Results from IDNB on real buildings

Data from 6 buildings taken from the CSMIP database are used to determine the
likelihood of coupling between pseudo-viscosity and hysteresis. As noted in the introduction, all
the buildings have lateral forces resisting systems made up by moment frames. To accept a
predicted modulation from IDNB we required that the result be stable with respect to 10%
perturbations on the tolerances (around their selected nominal values of (0.05,0.3,0.5) and that
the vector 7 contain stations from no less than two disjointed time intervals. These criteria were
satisfied in 4 of the buildings selected but in station 57562, 7 = @ until !/, was increase to 0.1 and

in 12299 there was only one nonlinear excursion until 7o/, was increased to 0.10. Table 1 lists the
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CSMIP station #, the earthquake that generated the response treated as potentially nonlinear, the
maximum recorded acceleration in the direction of analysis, the central 90% of the Arias
intensity duration (Arias 1970), information on how the linear response used to compute the
reference damping was obtained and the value of the modulation obtained when IDNB was used
to interrogate the data. The plots from where the modulations noted are the minima are depicted

in Figure 2.
Table 1. Information on Buildings and Modulation
Channels psa! InD for linear Lateral Load | Modulation
Station Earthquake tho response Resisting )
computed using System
Northridge 11,8,5,2 (0.865g) Concrete 0.22
24322 8.54sec Landers92 Frames
2,5,8 (0.579g) last 32 secs of Steel 0.69?
57562 LomaPrieta 10.7sec the motion in Frames
column#2
1,3,12,11,10 (0.445g) Last 24 secs of Steel 0.17%
12299 PalmSprings86 11.2 sec the motion in Frames
column#2
3,5,8,11 (0.448g) Steel 0.49
24231 Northridge 11.8sec Whittier87 Frames
13,12,11,10,9 (0.578g) Concrete 0.66
24386 Northridge 12.1sec BigBear92 Frames
14,13,12,11,10 (0.312g) Concrete 0.61
24464 Northridge 13.54sec Whittier87 Frames

Ipeak acceleration recorded on the channels used
2 tol, relaxed to 0.1
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Figure 2. Normalized IDNB metric versus modulation for the cases in Tablel.

Concluding Observations

The results in Table 1 support the contention that the non-hysteretic related dissipation
that takes place during plastic excursions is less than the value that an invariant pseudo-viscosity
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model predicts. This result is consistent with the standard framework were damping ratios are
assigned reasonable invariance within a structural type and material and the damping constants
follow. Specifically, from this perspective one expects that the effectiveness of the pseudo-
viscosity will decrease when the structure softens as a result of inelastic action, and this is what
IDNB identifies. Accepting that there is a decrease in the pseudo-viscosity in the nonlinear case
the question that opens up is how this should be handled in practice. While we have not done any
systematic examination at the time or writing, our position (at this point) is that an approach that
allows use of existing nonlinear codes without modification is likely justified. Specifically, it
may be that it will be sufficient to state that if for linear analysis the viscous model is set up
based on critical damping ratios equal to X% then for nonlinear time history analysis one should
use some fraction (to be determined) of X.
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