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Abstract 
 

This paper presents a methodology to determine the time history of the structural 
response using the Temporal Convolutional Network (TCN), a deep learning method. The 
methodology, in conjunction with sensor data from instrumented buildings, facilitates the 
prediction of the response in future earthquakes without a structural analysis model, providing a 
computationally effective complement, or even alternative, to nonlinear time history analysis. 
The developed TCN model is applied for predicting the responses of numerical models, a 
shaking table tested structure, and instrumented buildings for a broad range of response 
characteristics. Furthermore, ground motions are predicted from the response accelerations using 
the TCN model. It is observed that the method successful predicted these responses using a 
practical number of recorded signals for training. The limitations of the adopted methodology 
are identified, which can be resolved in future studies with physics-informed AI methodologies. 

 
Introduction 

 
This paper aims at developing a methodology to determine the time history of the 

structural response using a deep learning approach, namely the Temporal Convolutional 
Network (TCN). When the developed methodology is adopted in conjunction with sensor data 
from instrumented buildings, it facilitates the prediction of the response in future earthquakes 
without structural analysis models. Accordingly, the adopted methodology complements or even 
provides a computationally effective alternative to nonlinear time history analysis.  

 
There has been a limited number of studies in the literature to predict the structural 

response in the form of time histories using deep learning approaches. Some of these studies 
focused on only predicting the peak response (Zhong et al., 2023). Although the peak response 
is important in design, assessment, and Performance-Based Earthquake Engineering (PBEE), the 
entire response history provides a complete description of the structural behavior. One particular 
use of the entire response history is detection of the existence, severity, and location of damage 
in Structural Health Monitoring (SHM), where the peak response is generally insufficient for 
this purpose (Muin and Mosalam, 2017, 2018; Park and Ang, 1985, Park et al., 1985). 
Therefore, there has been some studies focused on predicting the entire response using machine 
learning (e.g., Chen et al., 2023; Zhang et al., 2019; Kundu and Chakraborty, 2020; Li and 
Spence, 2020). In these studies, either a structural component or a single instrumented building 
was considered without providing detailed physical explanations of the data-driven predictions.  
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The developed TCN model herein is applied to predict the time history of the structural 
response of systems with various characteristics as outlined in Table 1. These characteristics 
include elastic and inelastic response, single mode and higher modes of vibration, and constant 
and varying damping ratios. The dynamic responses of these systems are characterized by the 
listed features in Table 1. Successful response predictions of the TCN model require the learning 
and accurate characterization of these features with varying complexities, as discussed in the 
following sections. The accuracy and challenges of the predictions for each system are discussed 
using concepts from structural dynamics. In addition to these predictions, reverse engineering is 
adopted for predictions of ground motions from measured or computed response accelerations. 

 
Table 1. Features characterizing the earthquake response of different structural systems. 

Response System Feature 1 Feature 2 Feature 3 

Linear 
elastic 

SDOF*  Natural period Damping ratio 

Ground 
motion 

Low- and Mid-rise 
Buildings First mode period Varying first mode 

damping ratios 

Tall Buildings  Periods for 
multiple modes  

Damping ratios of 
multiple modes 

Inelastic 
SDOF Natural period & 

damping ratio Force capacity Ground 
motion Low and Mid-rise 

Buildings  
Elongation of 
first mode period 

Varying first mode 
damping ratio  

*Single Degree Of Freedom 
 

Temporal Convolutional Network 
 

The TCN was proposed by Lea et al. (2017) and is a powerful and innovative deep 
learning architecture designed for processing sequential data, particularly for time-series analysis 
and natural language processing tasks, refer to Figure 1. TCNs are built upon the Convolutional 
Neural Networks (CNNs), but they can be adapted to model temporal dependencies in sequential 
data, making them suitable for tasks which require understanding patterns and trends over time. 
TCNs employ a stack of one-dimensional convolutional layers to efficiently learn dependencies 
across different time steps. This design allows TCNs to utilize parallel computing, which makes 
them efficient and fast to train. TCNs have gained popularity due to their ability to capture long-
range dependencies in sequential data without suffering from the vanishing gradient problem 
often encountered by other deep learning methods, like Recurrent Neural Networks (RNNs). 
They have been successfully applied in various domains, such as natural language processing, 
speech recognition, and sensor data analysis.  

 
SDOF Numerical Model 

 
For verification of the developed TCN model and its implementation, the acceleration 

responses of a linear elastic SDOF system are predicted and compared with the computed results. 
For this purpose, a SDOF system is considered (period = 0.41 sec and damping ratio = 2.35%). It 
is trained using 11 motions and tested using 7 motions. The chosen period and damping ratio are 
those identified for the San Bernardino 6-story hotel in the NS direction, which is discussed in 
the next section. The motions used for training and testing are the recorded ground and response 
accelerations of the same hotel building. The predictions are very accurate with a correlation 
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coefficient of 99.99% over the 7 tested motions, verifying the implementation of the TCN 
method. The predicted acceleration time histories are compared with the computed ones (referred 
to as real) for one of the test motions (Fontana Earthquake of 25 July 2015) in Figure 2, along 
with the comparison of the frequency contents, showing a very close match. 

 

 
Figure 1. Schematic of TCN architecture applied to a two-story frame. 

 
Linear Elastic Response Prediction 

 
The response of an elastic SDOF system subjected to ground motions depends only on: 

(a) the natural period of the SDOF system, (b) the damping ratio of the SDOF system, and (c) the 
applied ground motion (Table 1). The highly accurate predictions of the SDOF system indicate 
that the TCN model is successful in learning the period and the damping ratio (Features 1 and 2, 
respectively, in Table 1) and the training model has enough variety of the ground motions for the 
model to learn the SDOF response when subjected to different excitations (Feature 3 in Table 1). 
 

  
(a) (b) 

Figure 2. Comparison of (a) time history, (b) frequency contents of the predicted and computed 
acceleration of the linear elastic SDOF system in Fontana Earthquake of 25 July 2015. 
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6-Story Reinforced Concrete (RC) Hotel Building in San Bernardino EW Direction 
 
Predictions are performed for the linear elastic response of two instrumented CSMIP 

buildings. One of them is discussed, namely, the 6-story RC Shear Wall (RCSW) hotel building 
in San Bernardino, California, designed in 1970 (Figure 3). This building is instrumented with 9 
accelerometers, three on each of the 1st, 3rd, and 6th (roof) floors, and has recorded multiple 
seismic events from 1987 to 2018. The EW and NS direction responses of this building are 
studied in this section for the linear response and in a later section for the inelastic response. In 
the EW direction, Channel 1 on the 1st floor is used as input, and Channels 4 and 7, on the 3rd 
floor and roof, respectively, are used as outputs. It is noted that the 1st floor boundary conditions 
are fixed. Therefore, Channel 1 directly represents the ground motion input to the structure. 
There are a total of 26 events recorded by this station, and 11 and 7 of these records are 
respectively used for training and testing. As shown in Figure 4, the motions used in the training 
set cover the entire range of shaking levels recorded on this building. It is possible to use another 
Intensity Measure (IM) to define the horizontal axis of this figure. However, the Peak Ground 
Acceleration (PGA) is used for simplicity as the objective is not to use the IM for quantitative 
damage detection, but it is rather used to graphically characterize the training and testing set 
motions as a function of the experienced shaking levels. Eleven motions were sufficient for 
predicting accurate results for the linear elastic response in the EW direction, and a larger 
number of motions were utilized for capturing the nonlinear response in the NS direction. 
 

It is noted that unprocessed accelerations are used for all studied instrumented buildings. 
This is because the processed output is not necessarily the direct result of the processed ground 
motion input. Therefore, the relationship between the input and output deviates slightly from the 
true behavior when processed data is used for input and output. This explanation was also 
supported by the slightly higher accuracy of predictions with unprocessed accelerations as 
compared to processed accelerations (91% versus 88% in Table 2). 
 

  
(a) (b) 

Figure 3. (a) Sensor locations and (b) photograph of the 6-story building in San Bernardino.  
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Figure 4. The training and testing sets used for San Bernardino 6-story building EW direction. 

 
Table 2. Accuracy of San Bernardino 6-story building acceleration predictions in E-W direction. 

Data Correlation Coefficient 
Training Set Testing Set 

Unprocessed 0.97 0.91 
Processed 0.97 0.88 

 
The predicted acceleration time histories at the 3rd and 6th (roof) floors are compared 

with the recorded time histories for one of the test motions (Chino Hills Earthquake of 29 July 
2008) in Figure 5. This is presented along with the comparison of the frequency contents, 
showing a close match at both floors in the time and frequency domains.  

 
From a structural dynamics perspective, the linear elastic response of a Multi-Degree of 

Freedom (MDOF) system depends on the natural periods, damping ratios, and mode shapes. The 
response of low and mid-rise buildings is generally governed by the first mode, which is also the 
case for the San Bernardino 6-story hotel building. Therefore, similar to the previously discussed 
SDOF system, the features that define the response are the period and damping ratio of the first 
mode and the ground motion itself (Table 1). It is noted that the response also depends on the 
mode shape. However, the first mode shape and the modal participation factor can be considered 
as a constant scale factor for all motions and therefore the mode shape is not listed as a feature in 
Table 1 for this system. 

 
Although all motions are in the linear elastic range as observed by the identified natural 

periods, damping ratios vary because of the contribution and complexity of different mechanisms 
to damping at different intensities (Figure 6). The phenomenon of varying damping levels in the 
linear elastic response is well-known (e.g., Chopra, 2012; Cruz and Miranda, 2017). Even for the 
same motion in forced vibrations or ambient conditions, the damping ratio varies from segment 
to segment of the motion (Brownjohn et al., 2018). For proper training, the number of motions in 
the training set should be sufficient and of different intensities to capture different levels of 
damping ratios. Therefore, a few motions are not sufficient for learning the damping ratio feature 
as opposed to the case for the period feature where more motions are needed in the training set to 
accurately predict the damping. The results of this case study indicated that 10 ground motions 
were sufficient to learn the period and damping features for consequent accurate predictions. 
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Figure 5. Comparison of predicted and recorded acceleration time history and the corresponding 
frequency contents in the EW direction of the San Bernardino 6-story building at (a, b) 3rd floor, 
(c, d) 6th floor (Chino Hills Earthquake of 29 July 2008). 

 

  
(a) Fundamental mode periods (b) Damping ratios 

Figure 6. Identified features for San Bernardino 6-story building. 
 

To demonstrate that accurate predictions are obtained for similar low- and mid-rise 
buildings with similar number of records in the training set, a 4-story hospital building in Hemet, 
California with RCSW structural system (similar to San Bernadino Hotel) is tested using the 
same TCN model. Accurate predictions were obtained using the same number of motions in the 
training set as the San Bernardino hotel building, i.e., 10 motions (Günay et al., 2023). 
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Tall Building with Higher Modes 
 
Different from low-rise and mid-rise buildings, the seismic response of a tall building 

includes higher mode effects. From a structural dynamics perspective, the features that should be 
accurately characterized for a tall building are the periods and the damping ratios of several 
modes contributing to the response (Table 1). The response also depends on the mode shapes, 
however, as discussed earlier, the mode shape and the modal participation factor can be 
considered as a constant scale factor in the linear elastic dynamic response of each mode for each 
motion and accordingly is not considered as an explicit feature. Considering the increased 
number of features, the presence of multiple modes in the response may introduce additional 
challenges to the process of learning, impacting the accuracy of the predictions. Therefore, a 54-
story instrumented building is selected to explore the TCN predictions for a case where higher 
modes are clearly present in the response. This 54-story building is a Steel Moment Resisting 
Frame (SMRF) building with composite slabs of 2.5 inches thick concrete over 3 inches steel 
deck located in Los Angeles (LA), Figure 7. From this figure, the building is instrumented with 
20 accelerometers at the basement (4 levels below ground), ground level, and the 20th, 36th, 
46th and the penthouse floors. There are Vierendeel trusses and 48-inch-deep transfer girders at 
the 36th and 46th floors where vertical setbacks occur. Because there is a sudden change of 
stiffness at these locations, increased accelerations are expected, and sensors are placed at these 
floors for monitoring this expected increase of accelerations. 
 

  
(a) (b) 

Figure 7. (a) Sensor locations and (b) photograph of the 54-story building in Los Angeles. 
 

In this case study, which has 11 recorded motions, 10 motions are used for training and 
the remaining one motion is used for testing (Figure 8). The testing motion in the EW direction is 
particularly interesting as the Peak Floor Acceleration (PFA) is smaller than the corresponding 
PGA. This is attributed to: (a) the shape of the response spectrum for this motion, where the 
response acceleration at the first mode period of the building is smaller than the PGA, and (b) 
multiple modes counteracting and reducing the accelerations. The successful predictions in the 
EW and NS directions at the 46th floor for the considered test motion are shown in Figure 9. 
This figure demonstrates that the trained TCN model is successful in learning more complex 
responses obtained as a superposition of multiple modes and the 10-motion training set results in 
accurate responses as in the cases of San Bernardino and Hemet buildings.  
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Figure 8. Training and testing sets used for LA 54 story building (a) EW, and (b) NS directions. 
 

  
(a) (b) 

Figure 9. The 46th story acceleration predictions for the 56-story building in LA: (a) EW, and 
(b) NS directions (Chino Hills Earthquake of 29 July 2008). 
 

Inelastic Response Prediction 
 

As shown in Table 1, inelastic response predictions were conducted for a SDOF system, 
and low and mid-rise buildings, one of which is a three-story structure tested in the laboratory, 
while the other one is the NS direction of the San Bernardino 6-story building discussed before. 
The predictions of these three cases are discussed in the following sections. 
 
6-Story RC Hotel Building in San Bernardino NS Direction 

 
The identified periods of this building in the EW direction are almost constant in the tight 

range of 0.21 to 0.24 sec, independent of the level of shaking, which is indicative of linear elastic 
response (Figure 10a). On the other hand, the periods in the NS direction clearly increase with 
the level of shaking, indicating inelastic response (Figure 10b). Although it is not entirely clear 
why this period elongation occurred since the set of training ground motions is for low-level 
motions, possible reasons can be minor cracking, foundation rocking, disengagement of partition 
walls providing stiffness, or loss of contributions from other nonstructural components. 
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Although the inelastic response of this case study is not extensive, it presents a more 
challenging case for prediction compared to the linear elastic response. To predict the inelastic 
response in the NS direction, the same 10 motions used in the EW direction were not sufficient. 
As observed in Table 1, the features that need to be characterized for predicting the linear elastic 
and inelastic responses of a low- or mid-rise building is the first mode period and the first mode 
period elongation, respectively. The accurate characterization of period elongation requires not 
only a larger number of motions, but also the use of motions that span the entire range of period 
elongation. As mentioned earlier, the total number of events recorded for this building is 26. Out 
of these 26 motions, 23 ones covering the entire range of shaking levels were used for training as 
shown in Figure 11 and three events in the middle of the intensity range of these motions are 
used for testing. The results show the increased accuracy of the predictions as demonstrated in 
Figure 12 for one of the motions in the testing set. Particularly, the time history, the peaks, and 
the frequency contents are well matched, indicating that increasing the number of motions in the 
training set from 11 to 23 led to successful characterization of the increase of the period 
elongation with increased shaking intensity. 
 

  
(a) (b) 

Figure 10. Identified periods of San Bernardino 6-story hotel building in (a) EW, and (b) NS 
directions in different earthquakes. 
 

These successful predictions highlight an important and unique characteristic of obtaining 
the response using a deep learning approach. Several reasons cause the observed period 
elongation with increased intensity of shaking (e.g., concrete cracking, foundation rocking, and 
disengagement of partition walls, or loss of contributions from other nonstructural components). 
None of these aspects are considered explicitly in the computational models developed for 
structural dynamic analysis. Even if they are modeled, there are many sources of epistemic 
uncertainties associated with this type of modeling. Therefore, the obtained data-driven TCN 
model results show that the adopted deep learning approach fills this gap and results in accurate 
structural response prediction that would not be possible using conventional dynamic analysis. 
This case study also highlights two important aspects worthy of future investigation, namely, the 
effect of increased size of the training dataset (justifying need for more instrumented systems) 
and a hybrid use of physics-based and data-driven models where the data-driven model improves 
the predictions in cases where the physics-based modeling capabilities are insufficient.  
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Figure 11. Training and testing sets for San Bernardino 6-story building NS direction. 
 

  
(a) (b) 

  
(c) (d) 

Figure 12. Comparison of predicted and recorded acceleration time history and the 
corresponding frequency contents in the NS direction of San Bernardino 6-story building at (a, b) 
3rd floor, (c, d) 6th floor (Chino Hills Earthquake of 07 Aug. 2012). 
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Laboratory Testing of a 3-Story REPEAT Frame 
 
Some instrumented buildings exist in the Center for Engineering Strong Motion Data 

(CESMD) database which experienced damage in previous earthquakes, e.g., the 7-story hotel in 
Van Nuys damaged in the 1994 Northridge earthquake. However, the number of earthquakes 
with inelastic response in these buildings is limited for meaningful training. Therefore, the 
results from a shaking table test are used as another system to predict its inelastic response.   

 
The tested structure is a 3-story SMRF and was tested on the 6 Degree-of-Freedom 

(DOF) PEER (Pacific Earthquake Engineering Research) Center shaking table at UC-Berkeley. 
Test structure photographs are shown in Figure 13. The frame is assembled using steel beam-
column elements, cross-joints, and clevises. The beams and columns are 65″ long, 5″×5″×3/8″ 
Hollow Square Section (HSS) members. There are 1″ thick plates at each end of the members to 
attach them to the beam-column connections. The cross-joints at the connections are composed 
of the same HSS profile and plates. 

 

 
Figure 13. Structure tested on the shaking table: (a) overall setup, (b) two vies of a column base, 
(c) end beam connection, and (d) inelastic response in the form of coupon buckling. 

 
The structure is tested along the Y-direction only by applying ground motions to the table. 

Along this direction, beams are connected to the cross-joints using clevises and coupons (Figure 
13c), resulting in semi-rigid connections. The flexural stiffness of these connections is provided 
by a couple moment developed by the coupons. Following the principles of capacity design, the 
sizes and number of coupons are selected such that the capacity of this couple moment is smaller 
than the yield moment of the beam HSS section to protect the beams from yielding. Thus, the 
damage occurs only at the coupons (Figure 13d), which can be easily replaced, and the frame 
reconstructed conveniently each time after destructive testing (thus, the name REPEAT stands for 
REconfigurable Platform for EArthquake Testing). The columns are directly connected to the 
cross-joints resulting in rigid connections. Following principles of earthquake design, columns 
are designed to be stronger than beams, preventing the yielding of columns. There are two 3/4″ 
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diameter threaded bars on the outside of each column clevis at the base (Figure 13b). Each beam-
column joint has four of these threaded bars, two on each side of the clevis (Figure 13c). 

 
The test matrix is shown in Table 3. Three ground motions are applied incrementally 

leading to linear elastic and inelastic response of the structure. Two of these motions are the 
ground motions recorded during the 1989 Loma Prieta earthquake. The third is a simulated 
ground motion obtained from physics-based simulations of the San Francisco Bay Area. In such 
simulations, a numerical model of the geologic and local soil layers is developed in a large area 
(e.g., the entire San Francisco Bay Area) and the ground motions at the earth’s surface and 
subsurface are computed at closely spaced grid points. This is obtained from the numerical 
solution of the viscoelastic wave equation in both space and time initiated by a fault rupture 
model (McCallen et al., 2021). These simulated ground motions are validated against recorded 
ground motions in real earthquakes, and they are part of the PEER Center effort to develop a 
Simulated Ground Motion Database (SGMD), to be publicly available at the end of 2024.  

 
Table 3. Test matrix used in the shaking table tests. 

 
 
In all tests, the applied ground motions were recorded on the table, along with the 

response accelerations at the center of each of the three floors. Inelastic response was 
experienced in runs 10-17 as observed by the period elongation in Figure 14, and the buckled 
coupons in Figure 13d. Predictions were conducted using two training sets. First training set 
included runs 1-13, with a mix of linear elastic and inelastic responses and predicted the inelastic 
responses in runs 14-17. The predicted acceleration response at the third floor in run 17 is 
compared with the recorded response in Figure 15. The prediction is reasonable in the time 
domain; however, it fails to capture the period elongation in the frequency domain. Although the 
training set covers the entire range of response, this is an indication that the number of motions 
in the training set is not sufficient. Accordingly, the number of motions in the second training set 
was increased to 16 (runs 1-16), while only run 17 was used for testing. Figure 16 shows the 
improved predictions, where the time history of the predicted acceleration response is close to 
the true acceleration response and the period elongation is captured. It is also observed that the 
predicted acceleration response includes the 2nd and 3rd mode natural frequencies in the 
frequency content, similar to the recorded response.  
 

Run # Ground Motion Scale Factor Run #
1 Simulated motion 0.25 10 Simulated motion 1.00
2 Loma Prieta Sunnyvale Station 0.25 11 Loma Prieta Sunnyvale Station 1.00
3 Loma Prieta Palo Alto Station 0.25 12 Loma Prieta Palo Alto Station 1.00
4 Simulated motion 0.50 13 Simulated motion 1.25
5 Loma Prieta Sunnyvale Station 0.50 14 Loma Prieta Sunnyvale Station 1.25
6 Loma Prieta Palo Alto Station 0.50 15 Loma Prieta Palo Alto Station 1.25
7 Simulated motion 0.75 16 Loma Prieta Palo Alto Station 1.50
8 Loma Prieta Sunnyvale Station 0.75 17 Loma Prieta Palo Alto Station 1.75
9 Loma Prieta Palo Alto Station 0.75

Ground Motion Scale Factor
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(a) (b) 

Figure 14. (a) First and (b) second training and testing sets used to predict the acceleration 
responses of the structure tested on the shaking table. 
 

  
(a) (b) 

Figure 15. Comparison of (a) time history, (b) frequency content of predicted and recorded 
accelerations at 3rd floor of tested REPEAT frame (Run 17) [training set with 13 motions]. 
 

  
(a) (b) 

Figure 16. Comparison of (a) time history, (b) frequency content of predicted and recorded 
accelerations at 3rd floor of tested REPEAT frame (Run 17) [training set with 16 motions]. 
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SDOF Numerical Model 
 
The characteristics of the SDOF system used for prediction of inelastic response is shown 

in Figure 17a. This SDOF system is developed to be represent low- and mid-rise buildings and 
has a period of 0.5 s and damping ratio of 5%. Considering a location with design acceleration of 
1.0g, Response Modification Factor (R) of 8, and overstrength of 1.6, the yield base shear (Fy) is 
20% of the weight W. The force-deformation relationship is bilinear with a strain hardening ratio 
of 1.0% of initial stiffness. Ninety-three motions with varying intensity levels were selected from 
the PEER Ground Motion (GM) database, and nonlinear time history analyses were conducted 
using these 93 motions. From these input – output (i.e., ground motion – computed response 
acceleration), 83 and 10 time-histories were used for training and testing, respectively. To predict 
the inelastic response, the training set covers the entire range of linear elastic and inelastic 
responses, while the testing set includes the analyses with moderate to very high levels of 
inelastic response, i.e., ductility demands between 6 and 14 (Figure 17b).     
 

 
 

(a) (b) 
Figure 17. (a) Inelastic SDOF, (b) ductility demands of the motions in training and testing sets. 
 

The prediction results from ground motion GM93 (Figure 17) is shown in Figure 18. The 
force-displacement relationship in Figure 18e is a highly inelastic response. The pattern of the 
predicted acceleration matches the true response well, both in the linear elastic and inelastic 
response ranges. The frequency content and the period elongation are well-captured. The main 
issue is the overestimated accelerations in the inelastic response range, where the computed 
acceleration response was capped around 0.25g, which is explained using the following equation 
of motion of an inelastic SDOF system:  

𝑚𝑚𝑚𝑚 + 𝑐𝑐𝑐𝑐 + 𝑓𝑓𝑟𝑟 = 0,     (1) 
where m is the mass, c is the damping coefficient, and fr is the restoring force of the SDOF. 
Because ζ=5%, the damping force can be ignored, and the maximum acceleration that the SDOF 
can experience (amax) is expressed as follows: 

𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 = 𝑓𝑓𝑟𝑟,𝑚𝑚𝑚𝑚𝑚𝑚/𝑚𝑚     (2) 
where fr,max is the maximum restoring force. For the highest experienced ductility of 14 (Figure 
17b) and strain hardening of 1%, fr,max = Fy+Fy/δy×0.01× (14δy – δy) = 1.13Fy = 0.23W (Figure 
17a), resulting in amax = 0.23g, which may further slightly increase because of the damping force.  
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Figure 18. Comparison of predicted and computed accelerations of the inelastic SDOF for 
GM93: (a) entire response, (b) elastic response, (c) inelastic response, (d) frequency domain, (e) 
computed force-displacement relationship. 

 
The TCN model was not able to capture this cap with 83 motions in the training set. 

Instead of increasing the number of motions in the training set, e.g., by an order of magnitude, 
one possible solution to overcome this limitation is the use of Physics-informed Neural Networks 
(PINNs) (Raissi et al., 2019; Eshkevari et al., 2021), which received increased attention in recent 
years. A PINN-based architecture can be thought of as a hybrid modeling approach, which 
combines the advantages of physics-based and data-driven approaches. The main advantage of a 
PINN is the ability to use physics-based information to complement the data-driven Artificial 
Intelligence (AI) model. This information is generally an important local information, e.g., the 
acceleration cap of the SDOF system, that requires a much larger number of training data 
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compared to that needed for the AI model to learn global underlying physics. Using PINN, this 
acceleration cap can be introduced to the TCN model as a constraint, instead of expecting the 
TCN to learn the presence of this cap using a very large training data set. The integration of 
PINN into the TCN model is especially important considering that the amount of data with 
inelastic behavior from instrumented structures is limited. The incorporation of PINNs to the 
TCN model for overcoming the issue of the acceleration cap is worth exploring in future studies.   

 
Ground Motion Prediction 

 
The successful response predictions discussed in the earlier sections show that the TCN 

model can capture well the transfer function between the input ground motion and the output 
acceleration response. Because the ground motion can be calculated using the output acceleration 
response and the inverse of the transfer function, the TCN model is expected to successfully 
perform predictions that use the inverse of the transfer function in the reverse case, given the 
accurate predictions in the forward case. With this expectation, ground motions are predicted 
from the recorded response accelerations using the TCN model in this section.  

 
The computation of the ground motion from the response is helpful from different 

perspectives in cases where ground motions are not available. It can facilitate the use of 
measured response for obtaining the ground motion to characterize the intensity of shaking in 
regions where ground motion recording stations is scarce. In these locations of scarce ground 
motion recording stations, the number of conventionally instrumented buildings (e.g., 
instrumented as part of CSMIP) are even less. However, there are buildings instrumented with 
alternative means, such as the Community Seismic Network, CSN (Clayton et al. 2015) or apps 
like MyShake (Kong et al., 2016), which employ smartphone accelerometers and crowdsourcing. 
Such alternative instrumentation at floor levels can be used to predict the ground motions at 
locations where the ground motions are not available. The prediction of ground motions can 
result in other benefits, such as facilitating the use of input-output methods for system 
identification, which are superior compared to the output-only methods. Ground motions are 
predicted for the mid-rise and tall buildings discussed in the earlier sections, and these 
predictions are discussed in the following sections. 
 
6-Story RC Hotel Building in San Bernardino EW Direction 

 
In the earlier section that focused on the prediction of the floor accelerations of the San 

Bernardino building in the EW direction, Channel 1 on the 1st floor was used as input, and 
Channel 4 on the 3rd floor was output. In the reverse case to predict the ground motion, 
Channels 4 and 1 are used as input and output, respectively. The same 10 motions used for 
response predictions are used in the training set for ground motion predictions. Figure 19 
compares the predicted and recorded ground motion acceleration history and the corresponding 
acceleration response spectra for two events in the testing set. It is observed that the time history 
and response spectra of the predicted accelerations match those of the recorded ones very well.  

 
Ground motions are commonly characterized with several intensity measures (IMs) for 

various purposes, such as development of ShakeMaps (Worden et al., 2018) and formulating the 
fragility functions for use in PBEE (Günay and Mosalam, 2013). Therefore, the various IMs of 
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predicted and recorded ground motions, including PGA, spectral acceleration (Sa) at 1st mode 
period, Arias Intensity (Ia), Peak Ground Velocity (PGV), and Cumulative Absolute Velocity 
(CAV) are compared for all motions in the testing set, Figure 20. The predicted values are very 
close to the recorded ones, showing that the developed TCN model is capable of predicting the 
ground motions using the response accelerations of a mid-rise building. 
 

  
(a) (b) 

  
(c) (d) 

Figure 19. Comparison of the predicted and recorded ground motion (a, c) acceleration time 
histories, (b, d) 5% damped acceleration response spectra for two of the events in the testing set. 
 
Tall Building with Higher Modes 

 
The difficulty of predicting responses that include higher modes also apply to the ground 

motion predictions. Therefore, ground motions are predicted for the tall building in this section 
to evaluate the accuracy of the predictions. The same training and testing sets used for the 
response predictions are utilized for predicting the ground motions by changing the input and 
output data. Three different ground motion predictions were performed using three training sets, 
where in all the sets, the output is the motion at the ground level, while the input in sets 1, 2, 3 
are the response acceleration at levels 46, 36, and 20, respectively. The presence of higher modes 
was expected in all three sets, but with different levels because of the mode shapes and the 
varying contribution of higher modes at different floors. As observed in Figure 21, the predicted 
ground motion time histories are close to the recorded ones, but not as close as the predictions 
for the San Bernardino building with the first mode building response. These differences 
between the predictions and recorded ground motions are more clearly observed in the 
acceleration response spectra. Using observations from San Bernardino building and the tall 
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building, it is concluded that ground motion predictions are accurate using response governed by 
first mode, and more training data is needed for successful predictions involving higher modes or 
inelastic effects. However, it was not possible to explore how many more motions are needed in 
the training set for accurate predictions, because all the events recorded for this building are 
already used and no additional data is available. This highlights the need for increased 
instrumentation of buildings and bridges. 
 

 
Figure 20. Comparison of predicted and recorded IMs for all motions in the testing set. 

 
Summary, Conclusions, and Future Directions 

 
This paper focused on the use of Temporal Convolutional Network (TCN) models for 

determining the structural response in the form of time histories. Models were trained using the 
data from several structural systems with different characteristics to predict the response. The 
results were explained using concepts of structural dynamics and applications in earthquake 
engineering. Table 4 provides a summary of the predictions for the studied structural systems. 
This table shows that the developed TCN model is successful in predicting the responses of the 
numerical models, shaking table tested structure, and several instrumented buildings, which span 
a broad range of response characteristics, using a practical number of motions for training in 
most of the cases. The limitations of the current methodology are identified, such as the issues 
with predicting the capped accelerations of the inelastic SDOF system, which can be resolved in 
future studies with recent advances in Artificial Intelligence (AI) models that make use of the 
physics-based information.  
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Figure 21. Comparison of predicted and recorded ground motion (a, b, c) acceleration time 
histories, (d) PGA, (e) 5% damped acceleration response spectra for the event in the testing set. 
 

Table 4. Summary of the TCN model predictions for different structural systems 
Prediction 
Type System # of motions in 

the training set Quality of the predictions 

Linear 
elastic 
response 

SDOF  7 Successful 
Two instrumented low- & mid-
rise buildings 10 Successful 

Instrumented tall building  10  Successful 

Inelastic 
response 

Bilinear SDOF 83 Partially successful, needs PINNs 
for improving peak response 

3-story SMRF tested on the 
shaking table  13 / 16 Needs improvement / Successful 

Instrumented mid-rise building 10 / 23  Needs improvement / Successful 

Ground 
motion 

Instrumented mid-rise building 10 Successful 

Instrumented tall building 10 Successful, predictions can be 
improved with more data 
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