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Abstract

This paper presents a methodology to determine the time history of the structural
response using the Temporal Convolutional Network (TCN), a deep learning method. The
methodology, in conjunction with sensor data from instrumented buildings, facilitates the
prediction of the response in future earthquakes without a structural analysis model, providing a
computationally effective complement, or even alternative, to nonlinear time history analysis.
The developed TCN model is applied for predicting the responses of numerical models, a
shaking table tested structure, and instrumented buildings for a broad range of response
characteristics. Furthermore, ground motions are predicted from the response accelerations using
the TCN model. It is observed that the method successful predicted these responses using a
practical number of recorded signals for training. The limitations of the adopted methodology
are identified, which can be resolved in future studies with physics-informed Al methodologies.

Introduction

This paper aims at developing a methodology to determine the time history of the
structural response using a deep learning approach, namely the Temporal Convolutional
Network (TCN). When the developed methodology is adopted in conjunction with sensor data
from instrumented buildings, it facilitates the prediction of the response in future earthquakes
without structural analysis models. Accordingly, the adopted methodology complements or even
provides a computationally effective alternative to nonlinear time history analysis.

There has been a limited number of studies in the literature to predict the structural
response in the form of time histories using deep learning approaches. Some of these studies
focused on only predicting the peak response (Zhong et al., 2023). Although the peak response
is important in design, assessment, and Performance-Based Earthquake Engineering (PBEE), the
entire response history provides a complete description of the structural behavior. One particular
use of the entire response history is detection of the existence, severity, and location of damage
in Structural Health Monitoring (SHM), where the peak response is generally insufficient for
this purpose (Muin and Mosalam, 2017, 2018; Park and Ang, 1985, Park et al., 1985).
Therefore, there has been some studies focused on predicting the entire response using machine
learning (e.g., Chen et al., 2023; Zhang et al., 2019; Kundu and Chakraborty, 2020; Li and
Spence, 2020). In these studies, either a structural component or a single instrumented building
was considered without providing detailed physical explanations of the data-driven predictions.
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The developed TCN model herein is applied to predict the time history of the structural
response of systems with various characteristics as outlined in Table 1. These characteristics
include elastic and inelastic response, single mode and higher modes of vibration, and constant
and varying damping ratios. The dynamic responses of these systems are characterized by the
listed features in Table 1. Successful response predictions of the TCN model require the learning
and accurate characterization of these features with varying complexities, as discussed in the
following sections. The accuracy and challenges of the predictions for each system are discussed
using concepts from structural dynamics. In addition to these predictions, reverse engineering is
adopted for predictions of ground motions from measured or computed response accelerations.

Table 1. Features characterizing the earthquake response of different structural systems.

Response System Feature 1 Feature 2 Feature 3
SDOF* Natural period Damping ratio

Linear Low- and Mid-rise First mode period Varying first mode Ground

. Buildings damping ratios .

elastic . - . motion

Tall Buildings Periods for Damping ratios of
multiple modes | multiple modes

SDOF Naturgl perlgd & Force capacity

Inelastic damping ratio Ground
Low and Mid-rise Elongation of Varying first mode | motion
Buildings first mode period| damping ratio

*Single Degree Of Freedom
Temporal Convolutional Network

The TCN was proposed by Lea et al. (2017) and is a powerful and innovative deep
learning architecture designed for processing sequential data, particularly for time-series analysis
and natural language processing tasks, refer to Figure 1. TCNs are built upon the Convolutional
Neural Networks (CNNs), but they can be adapted to model temporal dependencies in sequential
data, making them suitable for tasks which require understanding patterns and trends over time.
TCNs employ a stack of one-dimensional convolutional layers to efficiently learn dependencies
across different time steps. This design allows TCNs to utilize parallel computing, which makes
them efficient and fast to train. TCNs have gained popularity due to their ability to capture long-
range dependencies in sequential data without suffering from the vanishing gradient problem
often encountered by other deep learning methods, like Recurrent Neural Networks (RNNs).
They have been successfully applied in various domains, such as natural language processing,
speech recognition, and sensor data analysis.

SDOF Numerical Model

For verification of the developed TCN model and its implementation, the acceleration
responses of a linear elastic SDOF system are predicted and compared with the computed results.
For this purpose, a SDOF system is considered (period = 0.41 sec and damping ratio = 2.35%). It
is trained using 11 motions and tested using 7 motions. The chosen period and damping ratio are
those identified for the San Bernardino 6-story hotel in the NS direction, which is discussed in
the next section. The motions used for training and testing are the recorded ground and response
accelerations of the same hotel building. The predictions are very accurate with a correlation

66



SMIP24 Seminar Proceedings

coefficient of 99.99% over the 7 tested motions, verifying the implementation of the TCN
method. The predicted acceleration time histories are compared with the computed ones (referred
to as real) for one of the test motions (Fontana Earthquake of 25 July 2015) in Figure 2, along
with the comparison of the frequency contents, showing a very close match.
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Figure 1. Schematic of TCN architecture applied to a two-story frame.
Linear Elastic Response Prediction

The response of an elastic SDOF system subjected to ground motions depends only on:
(a) the natural period of the SDOF system, (b) the damping ratio of the SDOF system, and (c) the
applied ground motion (Table 1). The highly accurate predictions of the SDOF system indicate
that the TCN model is successful in learning the period and the damping ratio (Features 1 and 2,
respectively, in Table 1) and the training model has enough variety of the ground motions for the
model to learn the SDOF response when subjected to different excitations (Feature 3 in Table 1).
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Figure 2. Comparison of (a) time history, (b) frequency contents of the predicted and computed
acceleration of the linear elastic SDOF system in Fontana Earthquake of 25 July 2015.

67



SMIP24 Seminar Proceedings

6-Story Reinforced Concrete (RC) Hotel Building in San Bernardino EW Direction

Predictions are performed for the linear elastic response of two instrumented CSMIP
buildings. One of them is discussed, namely, the 6-story RC Shear Wall (RCSW) hotel building
in San Bernardino, California, designed in 1970 (Figure 3). This building is instrumented with 9
accelerometers, three on each of the 1st, 3rd, and 6th (roof) floors, and has recorded multiple
seismic events from 1987 to 2018. The EW and NS direction responses of this building are
studied in this section for the linear response and in a later section for the inelastic response. In
the EW direction, Channel 1 on the Ist floor is used as input, and Channels 4 and 7, on the 3rd
floor and roof, respectively, are used as outputs. It is noted that the 1st floor boundary conditions
are fixed. Therefore, Channel 1 directly represents the ground motion input to the structure.
There are a total of 26 events recorded by this station, and 11 and 7 of these records are
respectively used for training and testing. As shown in Figure 4, the motions used in the training
set cover the entire range of shaking levels recorded on this building. It is possible to use another
Intensity Measure (IM) to define the horizontal axis of this figure. However, the Peak Ground
Acceleration (PGA) is used for simplicity as the objective is not to use the IM for quantitative
damage detection, but it is rather used to graphically characterize the training and testing set
motions as a function of the experienced shaking levels. Eleven motions were sufficient for
predicting accurate results for the linear elastic response in the EW direction, and a larger
number of motions were utilized for capturing the nonlinear response in the NS direction.

It is noted that unprocessed accelerations are used for all studied instrumented buildings.
This is because the processed output is not necessarily the direct result of the processed ground
motion input. Therefore, the relationship between the input and output deviates slightly from the
true behavior when processed data is used for input and output. This explanation was also
supported by the slightly higher accuracy of predictions with unprocessed accelerations as
compared to processed accelerations (91% versus 88% in Table 2).

San Bernandino - 6-story Hotel

(CSMIP Station No. 23287)
SENSOR LOCATIONS

— Roof

6th Floor

N€—>S

(a)
Figure 3. (a) Sensor locations and (b) photograph of the 6-story building in San Bernardino.
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Figure 4. The training and testing sets used for San Bernardino 6-story building EW direction.

Table 2. Accuracy of San Bernardino 6-story building acceleration predictions in E-W direction.

Correlation Coefficient
Data - -
Training Set | Testing Set
Unprocessed 0.97 0.91
Processed 0.97 0.88

The predicted acceleration time histories at the 3rd and 6th (roof) floors are compared
with the recorded time histories for one of the test motions (Chino Hills Earthquake of 29 July
2008) in Figure 5. This is presented along with the comparison of the frequency contents,
showing a close match at both floors in the time and frequency domains.

From a structural dynamics perspective, the linear elastic response of a Multi-Degree of
Freedom (MDOF) system depends on the natural periods, damping ratios, and mode shapes. The
response of low and mid-rise buildings is generally governed by the first mode, which is also the
case for the San Bernardino 6-story hotel building. Therefore, similar to the previously discussed
SDOF system, the features that define the response are the period and damping ratio of the first
mode and the ground motion itself (Table 1). It is noted that the response also depends on the
mode shape. However, the first mode shape and the modal participation factor can be considered
as a constant scale factor for all motions and therefore the mode shape is not listed as a feature in
Table 1 for this system.

Although all motions are in the linear elastic range as observed by the identified natural
periods, damping ratios vary because of the contribution and complexity of different mechanisms
to damping at different intensities (Figure 6). The phenomenon of varying damping levels in the
linear elastic response is well-known (e.g., Chopra, 2012; Cruz and Miranda, 2017). Even for the
same motion in forced vibrations or ambient conditions, the damping ratio varies from segment
to segment of the motion (Brownjohn et al., 2018). For proper training, the number of motions in
the training set should be sufficient and of different intensities to capture different levels of
damping ratios. Therefore, a few motions are not sufficient for learning the damping ratio feature
as opposed to the case for the period feature where more motions are needed in the training set to
accurately predict the damping. The results of this case study indicated that 10 ground motions
were sufficient to learn the period and damping features for consequent accurate predictions.
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Figure 5. Comparison of predicted and recorded acceleration time history and the corresponding
frequency contents in the EW direction of the San Bernardino 6-story building at (a, b) 3rd floor,
(c, d) 6th floor (Chino Hills Earthquake of 29 July 2008).

T (sec)

0.26

02 |

015 |

01 |

Damping Ratio (%)

9

8 L

@ aning 4 @ raining
@ testing @ testing
L L L L 0 L L L L
0 0.05 0.1 0.15 0.2 0.25 0 0.05 0.1 0.15 0.2 0.25
PFAEW (g) PFAEW (g)
(a) Fundamental mode periods (b) Damping ratios

Figure 6. Identified features for San Bernardino 6-story building.

To demonstrate that accurate predictions are obtained for similar low- and mid-rise
buildings with similar number of records in the training set, a 4-story hospital building in Hemet,
California with RCSW structural system (similar to San Bernadino Hotel) is tested using the
same TCN model. Accurate predictions were obtained using the same number of motions in the
training set as the San Bernardino hotel building, i.e., 10 motions (Giinay et al., 2023).
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Tall Building with Higher Modes

Different from low-rise and mid-rise buildings, the seismic response of a tall building
includes higher mode effects. From a structural dynamics perspective, the features that should be
accurately characterized for a tall building are the periods and the damping ratios of several
modes contributing to the response (Table 1). The response also depends on the mode shapes,
however, as discussed earlier, the mode shape and the modal participation factor can be
considered as a constant scale factor in the linear elastic dynamic response of each mode for each
motion and accordingly is not considered as an explicit feature. Considering the increased
number of features, the presence of multiple modes in the response may introduce additional
challenges to the process of learning, impacting the accuracy of the predictions. Therefore, a 54-
story instrumented building is selected to explore the TCN predictions for a case where higher
modes are clearly present in the response. This 54-story building is a Steel Moment Resisting
Frame (SMRF) building with composite slabs of 2.5 inches thick concrete over 3 inches steel
deck located in Los Angeles (LA), Figure 7. From this figure, the building is instrumented with
20 accelerometers at the basement (4 levels below ground), ground level, and the 20th, 36th,
46th and the penthouse floors. There are Vierendeel trusses and 48-inch-deep transfer girders at
the 36th and 46th floors where vertical setbacks occur. Because there is a sudden change of
stiffness at these locations, increased accelerations are expected, and sensors are placed at these
floors for monitoring this expected increase of accelerations.
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Figure 7. (a) Sensor locations and (b) photograph of the 54-story building in Los Angeles.

In this case study, which has 11 recorded motions, 10 motions are used for training and
the remaining one motion is used for testing (Figure 8). The testing motion in the EW direction is
particularly interesting as the Peak Floor Acceleration (PFA) is smaller than the corresponding
PGA. This is attributed to: (a) the shape of the response spectrum for this motion, where the
response acceleration at the first mode period of the building is smaller than the PGA, and (b)
multiple modes counteracting and reducing the accelerations. The successful predictions in the
EW and NS directions at the 46th floor for the considered test motion are shown in Figure 9.
This figure demonstrates that the trained TCN model is successful in learning more complex
responses obtained as a superposition of multiple modes and the 10-motion training set results in
accurate responses as in the cases of San Bernardino and Hemet buildings.
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Figure 8. Training and testing sets used for LA 54 story building (a) EW, and (b) NS directions.
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Figure 9. The 46th story acceleration predictions for the 56-story building in LA: (a) EW, and
(b) NS directions (Chino Hills Earthquake of 29 July 2008).

Inelastic Response Prediction

As shown in Table 1, inelastic response predictions were conducted for a SDOF system,

and low and mid-rise buildings, one of which is a three-story structure tested in the laboratory,
while the other one is the NS direction of the San Bernardino 6-story building discussed before.
The predictions of these three cases are discussed in the following sections.

6-Story RC Hotel Building in San Bernardino NS Direction

The identified periods of this building in the EW direction are almost constant in the tight

range of 0.21 to 0.24 sec, independent of the level of shaking, which is indicative of linear elastic
response (Figure 10a). On the other hand, the periods in the NS direction clearly increase with
the level of shaking, indicating inelastic response (Figure 10b). Although it is not entirely clear
why this period elongation occurred since the set of training ground motions is for low-level

motions, possible reasons can be minor cracking, foundation rocking, disengagement of partition
walls providing stiffness, or loss of contributions from other nonstructural components.
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Although the inelastic response of this case study is not extensive, it presents a more
challenging case for prediction compared to the linear elastic response. To predict the inelastic
response in the NS direction, the same 10 motions used in the EW direction were not sufficient.
As observed in Table 1, the features that need to be characterized for predicting the linear elastic
and inelastic responses of a low- or mid-rise building is the first mode period and the first mode
period elongation, respectively. The accurate characterization of period elongation requires not
only a larger number of motions, but also the use of motions that span the entire range of period
elongation. As mentioned earlier, the total number of events recorded for this building is 26. Out
of these 26 motions, 23 ones covering the entire range of shaking levels were used for training as
shown in Figure 11 and three events in the middle of the intensity range of these motions are
used for testing. The results show the increased accuracy of the predictions as demonstrated in
Figure 12 for one of the motions in the testing set. Particularly, the time history, the peaks, and
the frequency contents are well matched, indicating that increasing the number of motions in the
training set from 11 to 23 led to successful characterization of the increase of the period
elongation with increased shaking intensity.
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Figure 10. Identified periods of San Bernardino 6-story hotel building in (a) EW, and (b) NS
directions in different earthquakes.

These successful predictions highlight an important and unique characteristic of obtaining
the response using a deep learning approach. Several reasons cause the observed period
elongation with increased intensity of shaking (e.g., concrete cracking, foundation rocking, and
disengagement of partition walls, or loss of contributions from other nonstructural components).
None of these aspects are considered explicitly in the computational models developed for
structural dynamic analysis. Even if they are modeled, there are many sources of epistemic
uncertainties associated with this type of modeling. Therefore, the obtained data-driven TCN
model results show that the adopted deep learning approach fills this gap and results in accurate
structural response prediction that would not be possible using conventional dynamic analysis.
This case study also highlights two important aspects worthy of future investigation, namely, the
effect of increased size of the training dataset (justifying need for more instrumented systems)
and a hybrid use of physics-based and data-driven models where the data-driven model improves
the predictions in cases where the physics-based modeling capabilities are insufficient.
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Laboratory Testing of a 3-Story REPEAT Frame

Some instrumented buildings exist in the Center for Engineering Strong Motion Data
(CESMD) database which experienced damage in previous earthquakes, e.g., the 7-story hotel in
Van Nuys damaged in the 1994 Northridge earthquake. However, the number of earthquakes
with inelastic response in these buildings is limited for meaningful training. Therefore, the
results from a shaking table test are used as another system to predict its inelastic response.

The tested structure is a 3-story SMRF and was tested on the 6 Degree-of-Freedom
(DOF) PEER (Pacific Earthquake Engineering Research) Center shaking table at UC-Berkeley.
Test structure photographs are shown in Figure 13. The frame is assembled using steel beam-
column elements, cross-joints, and clevises. The beams and columns are 65" long, 5"x5"x3/8"
Hollow Square Section (HSS) members. There are 1” thick plates at each end of the members to
attach them to the beam-column connections. The cross-joints at the connections are composed
of the same HSS profile and plates.

qjllillb - 2
:ll

\ “n“)

o e PN

Flgure 13. Structure tested on the shaking table: (a) overall setup, (b) two vies of a column base,
(c) end beam connection, and (d) inelastic response in the form of coupon buckling.

The structure is tested along the Y-direction only by applying ground motions to the table.
Along this direction, beams are connected to the cross-joints using clevises and coupons (Figure
13c), resulting in semi-rigid connections. The flexural stiffness of these connections is provided
by a couple moment developed by the coupons. Following the principles of capacity design, the
sizes and number of coupons are selected such that the capacity of this couple moment is smaller
than the yield moment of the beam HSS section to protect the beams from yielding. Thus, the
damage occurs only at the coupons (Figure 13d), which can be easily replaced, and the frame
reconstructed conveniently each time after destructive testing (thus, the name REPEAT stands for
REconfigurable Platform for EArthquake Testing). The columns are directly connected to the
cross-joints resulting in rigid connections. Following principles of earthquake design, columns
are designed to be stronger than beams, preventing the yielding of columns. There are two 3/4"
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diameter threaded bars on the outside of each column clevis at the base (Figure 13b). Each beam-
column joint has four of these threaded bars, two on each side of the clevis (Figure 13c¢).

The test matrix is shown in Table 3. Three ground motions are applied incrementally
leading to linear elastic and inelastic response of the structure. Two of these motions are the
ground motions recorded during the 1989 Loma Prieta earthquake. The third is a simulated
ground motion obtained from physics-based simulations of the San Francisco Bay Area. In such
simulations, a numerical model of the geologic and local soil layers is developed in a large area
(e.g., the entire San Francisco Bay Area) and the ground motions at the earth’s surface and
subsurface are computed at closely spaced grid points. This is obtained from the numerical
solution of the viscoelastic wave equation in both space and time initiated by a fault rupture
model (McCallen et al., 2021). These simulated ground motions are validated against recorded
ground motions in real earthquakes, and they are part of the PEER Center effort to develop a
Simulated Ground Motion Database (SGMD), to be publicly available at the end of 2024.

Table 3. Test matrix used in the shaking table tests.

Run # Ground Motion Scale Factor|Run # Ground Motion Scale Factor

1 Simulated motion 0.25 10 Simulated motion 1.00
2 Loma Prieta Sunnyvale Station 0.25 11 | Loma Prieta Sunnyvale Station 1.00
3 Loma Prieta Palo Alto Station 0.25 12 | Loma Prieta Palo Alto Station 1.00
4 Simulated motion 0.50 13 Simulated motion 1.25
5 Loma Prieta Sunnyvale Station 0.50 14 | Loma Prieta Sunnyvale Station 1.25
6 Loma Pricta Palo Alto Station 0.50 15 | Loma Pricta Palo Alto Station 1.25
7 Simulated motion 0.75 16 | Loma Pricta Palo Alto Station 1.50
8 Loma Prieta Sunnyvale Station 0.75 17 | Loma Prieta Palo Alto Station 1.75
9 Loma Prieta Palo Alto Station 0.75

In all tests, the applied ground motions were recorded on the table, along with the
response accelerations at the center of each of the three floors. Inelastic response was
experienced in runs 10-17 as observed by the period elongation in Figure 14, and the buckled
coupons in Figure 13d. Predictions were conducted using two training sets. First training set
included runs 1-13, with a mix of linear elastic and inelastic responses and predicted the inelastic
responses in runs 14-17. The predicted acceleration response at the third floor in run 17 is
compared with the recorded response in Figure 15. The prediction is reasonable in the time
domain; however, it fails to capture the period elongation in the frequency domain. Although the
training set covers the entire range of response, this is an indication that the number of motions
in the training set is not sufficient. Accordingly, the number of motions in the second training set
was increased to 16 (runs 1-16), while only run 17 was used for testing. Figure 16 shows the
improved predictions, where the time history of the predicted acceleration response is close to
the true acceleration response and the period elongation is captured. It is also observed that the
predicted acceleration response includes the 2nd and 3rd mode natural frequencies in the
frequency content, similar to the recorded response.
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SDOF Numerical Model

The characteristics of the SDOF system used for prediction of inelastic response is shown
in Figure 17a. This SDOF system is developed to be represent low- and mid-rise buildings and
has a period of 0.5 s and damping ratio of 5%. Considering a location with design acceleration of
1.0g, Response Modification Factor (R) of 8, and overstrength of 1.6, the yield base shear (Fy) is
20% of the weight W. The force-deformation relationship is bilinear with a strain hardening ratio
of 1.0% of initial stiffness. Ninety-three motions with varying intensity levels were selected from
the PEER Ground Motion (GM) database, and nonlinear time history analyses were conducted
using these 93 motions. From these input — output (i.e., ground motion — computed response
acceleration), 83 and 10 time-histories were used for training and testing, respectively. To predict
the inelastic response, the training set covers the entire range of linear elastic and inelastic
responses, while the testing set includes the analyses with moderate to very high levels of
inelastic response, i.e., ductility demands between 6 and 14 (Figure 17b).
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Figure 17. (a) Inelastic SDOF, (b) ductility demands of the motions in training and testing sets.

The prediction results from ground motion GM93 (Figure 17) is shown in Figure 18. The
force-displacement relationship in Figure 18e is a highly inelastic response. The pattern of the
predicted acceleration matches the true response well, both in the linear elastic and inelastic
response ranges. The frequency content and the period elongation are well-captured. The main
issue is the overestimated accelerations in the inelastic response range, where the computed
acceleration response was capped around 0.25g, which is explained using the following equation
of motion of an inelastic SDOF system:

ma+cv+f. =0, (1)
where m is the mass, c is the damping coefficient, and f- is the restoring force of the SDOF.
Because (=5%, the damping force can be ignored, and the maximum acceleration that the SDOF
can experience (amax) 1s expressed as follows:

Amax = frmax/M (2)
where fimax 1s the maximum restoring force. For the highest experienced ductility of 14 (Figure
17b) and strain hardening of 1%, frimax = Fy+Fy/0yx0.01x (148y— 0y) = 1.13Fy = 0.23W (Figure
17a), resulting in amax = 0.23g, which may further slightly increase because of the damping force.
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Figure 18. Comparison of predicted and computed accelerations of the inelastic SDOF for
GM093: (a) entire response, (b) elastic response, (¢) inelastic response, (d) frequency domain, ()
computed force-displacement relationship.

The TCN model was not able to capture this cap with 83 motions in the training set.
Instead of increasing the number of motions in the training set, e.g., by an order of magnitude,
one possible solution to overcome this limitation is the use of Physics-informed Neural Networks
(PINNSs) (Raissi et al., 2019; Eshkevari et al., 2021), which received increased attention in recent
years. A PINN-based architecture can be thought of as a hybrid modeling approach, which
combines the advantages of physics-based and data-driven approaches. The main advantage of a
PINN is the ability to use physics-based information to complement the data-driven Artificial
Intelligence (AI) model. This information is generally an important local information, e.g., the
acceleration cap of the SDOF system, that requires a much larger number of training data
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compared to that needed for the Al model to learn global underlying physics. Using PINN, this
acceleration cap can be introduced to the TCN model as a constraint, instead of expecting the
TCN to learn the presence of this cap using a very large training data set. The integration of
PINN into the TCN model is especially important considering that the amount of data with
inelastic behavior from instrumented structures is limited. The incorporation of PINNSs to the
TCN model for overcoming the issue of the acceleration cap is worth exploring in future studies.

Ground Motion Prediction

The successful response predictions discussed in the earlier sections show that the TCN
model can capture well the transfer function between the input ground motion and the output
acceleration response. Because the ground motion can be calculated using the output acceleration
response and the inverse of the transfer function, the TCN model is expected to successfully
perform predictions that use the inverse of the transfer function in the reverse case, given the
accurate predictions in the forward case. With this expectation, ground motions are predicted
from the recorded response accelerations using the TCN model in this section.

The computation of the ground motion from the response is helpful from different
perspectives in cases where ground motions are not available. It can facilitate the use of
measured response for obtaining the ground motion to characterize the intensity of shaking in
regions where ground motion recording stations is scarce. In these locations of scarce ground
motion recording stations, the number of conventionally instrumented buildings (e.g.,
instrumented as part of CSMIP) are even less. However, there are buildings instrumented with
alternative means, such as the Community Seismic Network, CSN (Clayton et al. 2015) or apps
like MyShake (Kong et al., 2016), which employ smartphone accelerometers and crowdsourcing.
Such alternative instrumentation at floor levels can be used to predict the ground motions at
locations where the ground motions are not available. The prediction of ground motions can
result in other benefits, such as facilitating the use of input-output methods for system
identification, which are superior compared to the output-only methods. Ground motions are
predicted for the mid-rise and tall buildings discussed in the earlier sections, and these
predictions are discussed in the following sections.

6-Story RC Hotel Building in San Bernardino EW Direction

In the earlier section that focused on the prediction of the floor accelerations of the San
Bernardino building in the EW direction, Channel 1 on the Ist floor was used as input, and
Channel 4 on the 3rd floor was output. In the reverse case to predict the ground motion,
Channels 4 and 1 are used as input and output, respectively. The same 10 motions used for
response predictions are used in the training set for ground motion predictions. Figure 19
compares the predicted and recorded ground motion acceleration history and the corresponding
acceleration response spectra for two events in the testing set. It is observed that the time history
and response spectra of the predicted accelerations match those of the recorded ones very well.

Ground motions are commonly characterized with several intensity measures (IMs) for

various purposes, such as development of ShakeMaps (Worden et al., 2018) and formulating the
fragility functions for use in PBEE (Giinay and Mosalam, 2013). Therefore, the various IMs of
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predicted and recorded ground motions, including PGA, spectral acceleration (Sa) at 1 mode
period, Arias Intensity (Ia), Peak Ground Velocity (PGV), and Cumulative Absolute Velocity
(CAV) are compared for all motions in the testing set, Figure 20. The predicted values are very
close to the recorded ones, showing that the developed TCN model is capable of predicting the
ground motions using the response accelerations of a mid-rise building.
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Figure 19. Comparison of the predicted and recorded ground motion (a, c) acceleration time
histories, (b, d) 5% damped acceleration response spectra for two of the events in the testing set.

-0.015

Tall Building with Higher Modes

The difficulty of predicting responses that include higher modes also apply to the ground
motion predictions. Therefore, ground motions are predicted for the tall building in this section
to evaluate the accuracy of the predictions. The same training and testing sets used for the
response predictions are utilized for predicting the ground motions by changing the input and
output data. Three different ground motion predictions were performed using three training sets,
where in all the sets, the output is the motion at the ground level, while the input in sets 1, 2, 3
are the response acceleration at levels 46, 36, and 20, respectively. The presence of higher modes
was expected in all three sets, but with different levels because of the mode shapes and the
varying contribution of higher modes at different floors. As observed in Figure 21, the predicted
ground motion time histories are close to the recorded ones, but not as close as the predictions
for the San Bernardino building with the first mode building response. These differences
between the predictions and recorded ground motions are more clearly observed in the
acceleration response spectra. Using observations from San Bernardino building and the tall
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building, it is concluded that ground motion predictions are accurate using response governed by
first mode, and more training data is needed for successful predictions involving higher modes or
inelastic effects. However, it was not possible to explore how many more motions are needed in
the training set for accurate predictions, because all the events recorded for this building are
already used and no additional data is available. This highlights the need for increased
instrumentation of buildings and bridges.
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Figure 20. Comparison of predicted and recorded IMs for all motions in the testing set.
Summary, Conclusions, and Future Directions

This paper focused on the use of Temporal Convolutional Network (TCN) models for
determining the structural response in the form of time histories. Models were trained using the
data from several structural systems with different characteristics to predict the response. The
results were explained using concepts of structural dynamics and applications in earthquake
engineering. Table 4 provides a summary of the predictions for the studied structural systems.
This table shows that the developed TCN model is successful in predicting the responses of the
numerical models, shaking table tested structure, and several instrumented buildings, which span
a broad range of response characteristics, using a practical number of motions for training in
most of the cases. The limitations of the current methodology are identified, such as the issues
with predicting the capped accelerations of the inelastic SDOF system, which can be resolved in
future studies with recent advances in Artificial Intelligence (AI) models that make use of the
physics-based information.
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Table 4. Summary of the TCN model predictions for different structural systems

Prediction # of motions in . .

Type System the training set Quality of the predictions

Lin SDOF 7 Successful

inear Two instrumented low- & mid-
elastic . o 10 Successful
reSPONSe rise buildings
P Instrumented tall building 10 Successful

Bilinear SDOF ]3 Part'lally supcessful, needs PINNs

Inelastic for improving peak response
3-story SMREF tested on the .

response . 13/16 Needs improvement / Successful
shaking table
Instrumented mid-rise building | 10/ 23 Needs improvement / Successful
Instrumented mid-rise building | 10 Successful

Ground —

. o qe Successful, predictions can be
motion Instrumented tall building 10 . .
improved with more data
References

Brownjohn, JM.W., Au, SK., Zhu, Y., Sun, Z., Li, B., Bassitt, J., Hudson, E., and Sun, H., 2018.
Bayesian operational modal analysis of Jiangyin Yangtze River bridge. Mechanical Systems and
Signal Processing, 110, 210-230.

Chen, Y., Sun, Z., Zhang, R., Yao, L., and Wu, G., 2023. Attention mechanism based neural networks for
structural post-earthquake damage state prediction and rapid fragility analysis. Computers &
Structures, 281, 107038.

Chopra, A.K., 2017. Dynamics of Structures, Theory and Applications to Earthquake Engineering, 5th
Edition. Hoboken, NJ, Pearson Education, 960.

83




SMIP24 Seminar Proceedings

Clayton, R.W., Heaton, T., Kohler, M., Chandy, M., Guy, R., and Bunn, J., 2015. Community seismic
network: A dense array to sense earthquake strong motion. Seismological Research Letters, 86(5),
1354-1363.

Cruz, C. and Miranda, E., 2017. Evaluation of damping ratios for the seismic analysis of tall buildings.
Journal of Structural Engineering, 143(1), 04016144.

Eshkevari, S.S., Takac, M., Pakzad, S.N., and Jahani, M., 2021. DynNet: Physics-based neural
architecture design for nonlinear structural response modeling and prediction. Engineering
Structures, 229, 111582.

Giinay, S. and Mosalam, K.M., 2013. PEER performance-based earthquake engineering methodology,
revisited. Journal of Earthquake Engineering, 17(6), 829-858.

Giinay, S., Pang, .LK.T., and Mosalam, K.M. (2023) Structural Response Prediction Using Deep Neural
Networks. Proceedings of SMIP2023.

Kong, Q., Allen, R.M., Schreier, L., & Kwon, Y.W. (2016). MyShake: A smartphone seismic network for
earthquake early warning and beyond. Science advances, 2(2), e150105.

Kundu, A. and Chakraborty, S., 2020, September. Deep learning-based metamodeling technique for
nonlinear seismic response quantification. In IOP Conference Series: Materials Science and
Engineering (Vol. 936, No. 1, p. 012042). IOP Publishing.

Lea, C., Flynn, M.D., Vidal, R., Reiter, A., and Hager, G.D., 2017. Temporal convolutional networks for
action segmentation and detection. In proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, 156-165.

Li, B. and Spence, S.M., 2022. Metamodeling through deep learning of high-dimensional dynamic
nonlinear systems driven by general stochastic excitation. Journal of Structural Engineering,
148(11), 04022186.

McCallen, D., Petersson, A., Rodgers, A., Pitarka, A., Miah, M., Petrone, F., Abrahamson, N., and Tang,
H., 2021. EQSIM—A Multidisciplinary Framework for Fault-to-Structure Earthquake Simulations
on Exascale Computers Part I: Computational Models and Workflow. Earthquake Spectra, 37(2),
707-735. doi:10.1177/8755293020970982.

Muin, S. and Mosalam, K.M., 2018. Localized Damage Detection of CSMIP Instrumented Buildings
using Cumulative Absolute Velocity: A Machine Learning Approach. In Proceedings of the SMIP18
Seminar on Utilization of Strong-Motion Data, Sacramento, CA, USA (Vol. 25).

Muin, S. and Mosalam, K.M., 2017. Cumulative absolute velocity as a local damage indicator of
instrumented structures. Earthquake Spectra, 33(2), 641-664.

Park, Y.J. and Ang, A.H.S., 1985. Mechanistic seismic damage model for reinforced concrete. Journal of
Structural Engineering, 111(4), 722-739.

Park, Y.J., Ang, A.H.S., and Wen, Y.K., 1985. Seismic damage analysis of reinforced concrete buildings.
Journal of Structural Engineering, 111(4), 740-757.

Raissi, M., Perdikaris, P., and Karniadakis, G.E., 2019. Physics-informed neural networks: A deep
learning framework for solving forward and inverse problems involving nonlinear partial differential
equations. Journal of Computational Physics, 378, 686-707.

Worden, C.B., Hearne, M., and Thompson, E.M., 2018. ShakeMap v4 Software, USGS Software Release.
https://doi.org/10.5066/P97FHEOL.

Zhang, R., Chen, Z., Chen, S., Zheng, J., Biiyiikdztiirk, O., and Sun, H., 2019. Deep long short-term
memory networks for nonlinear structural seismic response prediction. Computers & Structures, 220,
55-68.

Zhong, K., Navarro, J.G., Govindjee, S., and Deierlein, G.G., 2023. Surrogate modeling of structural
seismic response using probabilistic learning on manifolds. Earthquake Engineering & Structural
Dynamics, 52(8), 2407-2428.

84



	PREDICTION OF STRUCTURAL RESPONSE AND GROUND MOTION USING DEEP NEURAL NETWORKS
	Abstract
	Introduction
	Temporal Convolutional Network
	SDOF Numerical Model

	Linear Elastic Response Prediction
	6-Story Reinforced Concrete (RC) Hotel Building in San Bernardino EW Direction
	Tall Building with Higher Modes

	Inelastic Response Prediction
	6-Story RC Hotel Building in San Bernardino NS Direction
	Laboratory Testing of a 3-Story REPEAT Frame
	SDOF Numerical Model

	Ground Motion Prediction
	6-Story RC Hotel Building in San Bernardino EW Direction

	Summary, Conclusions, and Future Directions
	Acknowledgements
	References


