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Abstract

One-dimensional ground response analyses (GRA) can introduce model error to site
response estimates when wave propagation is not dominated by vertically propagating shear
waves. We identify sites suitable for GRA based on microtremor horizontal-to-vertical spectral
ratios (mHVSRs). We analyzed 300 microtremor recordings from 17 vertical array sites in
California, comparing mHVSRs at varying spatial separations. We find that low mHVSR spatial
correlation, as measured using Longest Common Subsequence, tends to occur at vertical array
sites that are poorly modeled by GRA. Conversely, stronger mHVSR correlations tend to occur
at sites where GRA is relatively effective.

Keywords: horizontal-to-vertical spectral ratios, ground response analysis, site response, spatial
variability

Introduction

One-dimensional (1D) ground response analyses (GRA) are commonly applied for
evaluating the effects of site response on ground shaking. These 1D analyses rely on the
assumptions that the soil profile is made up of laterally continuous horizontal layers and the
wavefield is comprised of only vertically-propagating shear waves. Previous studies have
evaluated the effectiveness of 1D GRA at vertical array sites in Japan (Thompson et al. 2012;
Kaklamanos et al. 2013; Pilz and Cotton, 2019; Tao and Rathje 2020a) and California (Teague et
al. 2018; Afshari and Stewart 2019; Tao and Rathje 2020a; Stewart and Afshari 2021; de la Torre
et al. 2022). Many of these studies have found that the site response predicted by 1D GRA does
not accurately capture observed transfer functions from appreciable fractions of the vertical array
sites and overpredicts transfer function ordinates near fundamental mode frequencies.

Misfits of 1D GRA to observation can be attributed to complexities of the soil profile and
wave field that are difficult to anticipate in advance for sites without vertical arrays (i.e., most
sites for which seismic hazard analyses are to be performed). To address this, a number of recent
SSHAC projects have incorporated model error into their logic trees. This model error represents
epistemic uncertainty in the use of 1D GRA as the basis for site response modeling. Using data
from California sites, a model for model error was developed by Stewart and Afshari (2021),
which has subsequently been confirmed by Bahrampouri and Rodriguez-Marek (2023) using
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data from Kik-net sites in Japan when reasonable levels of Vs profile variability are considered in
the data interpretation. The approximate level of model error at periods shorter than the soil
column period is 0.3 natural log units, which is appreciable. Such high levels of model error
represent network averages, whereas some individual sites are known to be relatively accurately
modelled by 1D GRA. For such sites, lower levels of model error in principle could be
technically defensible. However, for this to be realized would require site characterization
methods that can be used to evaluate whether a site will behave in a relatively one-dimensional
manner. In the absence of abnormally extensive site characterization (i.e., many closely spaced
invasive tests to measure Vs profiles), we currently lack such methods.

In this study, we investigate the use of microtremor Horizontal-to-Vertical Spectral Ratios
(mHVSR) at a series of locations across a site as a means by which to assess site heterogeneity.
For each of 17 vertical array sites in California, mHVSR was measured near the array and at a
series of stations at distances of approximately 50, 100, 250 and 500 m from the array in an
approximately circular pattern (12-16 locations per site in total). We propose repeatable metrics
by which to interpret spatial variations of mHVSR across these locations and apply them to a
dataset of 300 microtremor measurements from the 17 vertical sites. Using data from prior
studies, we re-evaluate the goodness-of-fit of empirical and theoretical transfer functions from
the vertical arrays to identify sites with and without good match of 1D GRA to the data. Finally,
we perform preliminary tests of the hypothesis that mHVSR spatial variability metrics correlate
to 1D GRA modeling effectiveness.

Methodology for Spatial Measurement and Interpretation of mHVSR

HVSR is an economical technique for seismic site characterization, employing a three-
component seismic instrument that records ambient ground vibrations over a relatively brief
duration (~ 1-2 hours) in two horizontal directions and vertically. Fourier amplitude spectra
(FAS), and the ratio of horizontal-to-vertical FAS are computed. Originally proposed by Nogoshi
and Igarashi (1971) and later popularized by Nakamura (1989), HVSR reveals site resonances if
horizontal components of seismic waves are amplified by sites to a greater degree than vertical
components. HVSR that is based on ambient vibrations from microtremors or anthropogenic
sources is commonly termed mHVSR to differentiate it from HVSR derived from earthquakes
(eHVSR).

Numerous studies have found that the lowest frequency peak observed in mHVSR often
correlates with the fundamental shear wave resonant frequency (fo) of the site (Lermo and Chavez-
Garcia 1993; Lachet and Bard 1994; Ghofrani et al. 2013; Molnar et al. 2018). Ordinates from
mHVSR have also been used in empirical models as predictors of site response (e.g., Pinilla-
Ramos et al. 2022; Wang et al. 2022a; Buckreis et al. 2024). Here a different application of
mHVSR is discussed, as a low-cost indicator of site heterogeneity.

Sites Considered and mHVSR Data Collection

We utilize a California vertical array database (Afshari et al. 2019) that consists of 21 sites,
which are primarily located near major highway bridges. These sites have time-averaged shear-
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wave velocities in the upper 30 m (Vs30) ranging from 160-810 m/s, with 10 sites being less than
300 m/s (Afshari and Stewart 2019).

From 17 of these sites, 300 microtremor measurements were performed, 16 from
(Ornelas et al. 2023) and 1 from Prof. Brady Cox (personal communication, 2024). These
measurements are archived in the shear wave velocity profile database (VSPDB) (Kwak et al.
2021). Figure 1 shows the locations of each of these stations and Table 1 provides details of each
site, including the mHVSR measurement identification number in the relational database (e.g.,
VSPDB ID).

Table 1. Attributes of vertical array sites in California used in this study

Station No. CSMIP Station No. VSPDB ID Station Name Vo (m/s) Latitude Longitude
2 68323 1783 Benicia-Martinez South 547 38.03351 122117
3 68206 1801 Crockett-Martinez 335 38.05394 122225
4 1794 1818 El Centro-Meloland 238 3277393 _115.449
7 UCSB Arrays 1835 Hollister 385 36.75758 “121.613
g 58798 1865 Hayward-San Mateo 185 3761694 122154
9 24703 1869 La Cienega 2142 34.03621 118378
10 24400 1874 Obregon Park 4352 3403701 118178
11 23792 1875 San Bemardino 252 34.06369 _117.298
12 68310 1891 Vallejo-Hwy 37 528 381217 122275
13 UCSB Arrays NA Wildlife Liquefaction Array 200 33.007 _115.53
14 67266 1909 Antioch-San Joaquin S. 253 3801792 121751
15 13186 1923 Corona 321 3388171 _117.549
16 3192 1939 Coronado East 329 3269825 117145
17 3193 1954 Coronado West 214 3268815 117164
18 58798 1968 Foster City-San Mateo 310 3757276 122264
19 58487 1986 Hayward-580W 489 37.68868 122107

20 58961 2006 San Francisco Bay Bridee 391 37.7866 -122.389

-122.000 -120.000

-118.000 =116.000

38.000 38.000

-3@

18

36.000 36.000

34.000 34.000

150 km

-122.000 -120.000 =118.000 =116.000

Figure 1. Locations of vertical array sites used in this study.
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Instruments in these mHVSR arrays were configured in a concentric circle layout, with
the center instrument near the vertical array and others at radii of 50, 100, 250, and 500 m. We
attempted to collect data from at least four locations around each circle for about 1-2 hours each
at different times. However, in some cases, we were constrained by bodies of water and restricted
access to properties (typically private property). The naming convention of the tests used was
based on the site, the distance from the array, and the index of the test. For example, testing at
site 2 and radius 50 m was named 2.50.1. A test at the vertical array or close to it would be 2.0.0,
meaning that it is 0 m away and the only test taken there. Figure 2 shows the test layouts for sites
in the Martinez Bay Area (Figure 2a) and El Centro-Meloland in Imperial Valley (Figure 2b).
Figure 2a shows an example of the limitations that occurred while collecting the microtremor
data, where some of the desired locations are in a nearby waterbody or private property.

st Sl B

-122.120 . -115.450 -115.445

Figure 2. Layout of mHVSR measurement locations: (a) plan view of site in Benicia-Martinez
(site 2), showing the limitations in the collection of data; (b) plan of site in El Centro-Meloland
(site 4), showing a layout where all tests were performed at the site. Numbers indicate test names
-- the first digit indicates the station number, the second indicates the distance from the vertical
array, and the last indicates the index of the test.

The temporary surveys were performed with deployments of Nanometrics Trillium
Compact Horizon 120s 3-component broadband seismometers with Pegasus PGS-140
dataloggers. These seismometers have a flat frequency bandwidth from 0.0083 — 100 Hz (0.01 —
120 s). The tests were performed for a recording time of 1-2 hr with a sampling rate of 200 Hz.
The sensors were generally partially buried 51-102 mm, where possible, to improve coupling
with the ground, and always covered with a 19-L bucket to reduce external noise such as wind.
Figure 3 shows the set-up of two different sensors, one that was mounted on the surface, and the
other buried below ground.
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Figure 3. Example field deployment of the sensors used for this study showing surface and
partially buried configurations

The data processing procedures used in the calculation of mHVSR ordinates are adapted
from Wang et al. (2022b) as described by Ornelas et al. (2024). These procedures are not
repeated here for brevity. Figure 4 shows an example smoothed mHVSR mean curve and
standard deviation for the Martinez site (i.e., site 2 in Figure 2a). This site has a significant low-
frequency peak, at about 0.7 Hz, which will be discussed further below.

4.0

il —  miVSR Mean
Std, Dev,

3.5¢-

TFrequency (Hz)
Figure 4. Computed mean mHVSR curve for a station 2.0.0 at site 2 Benicia-Martinez, showing
an example of a processed mHVSR curve.

Correlation Models for Evaluation of Spatial Variability in HVSR

Processed mHVSR data for each location in the circular arrays was evaluated for
similarity to the center mHVSR curve closest to the vertical array. This evaluation began with
visual inspections of the data by three different analysts (the three authors of this paper) to
qualitatively assess compatibility of the curves and to determine how their correlation might be
measured. We decided to consider mHVSR ordinates within frequency intervals, with each
frequency interval represented a bin with a peak in any of the mHVSR curves at the site. The
mHVSR curves were also organized by radial distance from the vertical array (50, 100, 250, 500
m).
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Analysts visually inspected the mHVSR curves of all sites for each distance and
frequency bin and qualitatively evaluated the similarity between the mHVSR closest to the
vertical array (i.e., the reference 0.0 test) and the mHVSR curves at different radial distances.
Figure 5 shows an example of two sites that the analysts inspected (the sites in Figure 2). Figure
5ais an example of mHVSR curves judged to be spatially similar, meaning that the majority of
the curves (shown in grey) have similar shapes and amplitudes, compared to the reference
mHVSR curve (shown in red) for the first two frequency intervals. Figure 5b is an example of
mHVSR curves judged to be spatial variable, due to vertical spacing of their ordinates (in this
case the shapes are similar). Other sites judged to be spatially variable had curves with different
shapes relative to the reference curve, suggesting more pronounced geologic complexity.

Site 2

Dist = +/- 50 Tests Dist = +/- 100 Tests

Legend
Tndividual mHVSR
0.0 Relerence mHV SR
Median ETEF
Freq. Interval

HVSR Amplitude
ETF Amplitude

ETF Amplitude

HVSR Amplitude
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Figure 5a. Mean mHVSR curves from Benicia-Martinez (site 2) for the central station (red line)
and four radial distances (gray lines). The black curve denotes the ETF from the vertical array.
The blue lines indicate different frequency intervals associated with distinct resonant peaks.

Because the analysis of spatial variability of mHVSR is used subsequently to investigate
the effectiveness of 1D GRA, we felt it was useful for the plots in Figure 5 to depict the
empirical transfer functions (ETFs) derived from vertical arrays, which demonstrate the
frequency range over which site response was measured. The ETFs were computed as described
in the following section and are shown in black in Figure 5. Our rationale is that the spatial
correlations of mHVSR ordinates are presumably most relevant for investigations of GRA over
the frequency range (e.g., fundamental mode frequency) as revealed by ETF ordinates. However,
we did not consider ETF attributes when selecting the frequency intervals used to assess
correlations between different mHVSR curves.
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Figure 5b. Mean mHVSR curves from El Centro-Meloland (site 4) for the central station (red
line) and four radial distances (gray lines). The black curve denotes the ETF from the vertical
array. The blue lines indicate different frequency intervals associated with distinct resonant
peaks.

For each of the considered frequency intervals, analysts assigned values of 0 to 3 based
on their assessment of the similarity of mHVSR curves at a given radial distance from the center
station. The indices indicate the following:

0. No peak was present in the reference curve in the frequency range

1. The curves were poorly correlated

2. Intermediate levels of correlation between curves for the frequency range and radial

distance

3. The curves were well correlated for the frequency range and radial distance
Because the indices are qualitative and user-dependent, we sought to identify correlation metrics
that could be computed directly from the data and provide similar results for the various radial
distances and frequency bins. Four correlation metrics were considered, three of which appeared
to best match the analysts’ visual assessments. These three metrics are:

e Longest Common Subsequence, LCSS (e.g., Vlachos et al. 2002)

e Pearson’s sample correlation coefficient r (e.g., Benesty et al. 2009)

e Mean Absolute Error (e.g., Willmott et al. 2005)
The association of the analyst-defined indices with correlation metrics is represented in Figure 6,
in which histograms are presenting showing the binned occurrences of the selected metrics for
results having a given index (0, 1, 2, 3). In Figure 8, strong agreement between the analysts’
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indices and the metrics is provided by high values of LCSS correlation and Pearson’s correlation,
and low values of maximum absolute error (MAE), for index 3 data and the opposite trends for
index 1 data. All three correlation metrics demonstrate such trends, but to varying degrees.
Ultimately, we selected the LCSS correlation due to the visually strongest trends with analysts’
indices.
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Figure 6. Histogram showing the distribution of values for three different correlation models:
Pearson r coefficient, Mean Absolute Error (MAE), and Longest Common SubSequence (LCSS).
These histograms compare the choices by analyst with what the values calculated by the
correlation models.

The LCSS metric, typically denoted S as shorthand for “similarity value,” is computed as

follows (Vlachos et al. 2002):
LCSSg(A,B)

min(n,m)

S(4,B,€,6) = (1

where 4 and B are arrays of mHVSR ordinates of size n X 2 and m X 2, respectively (n and m
indicate the number of frequencies in each array and 2 reflects that the arrays have one column
for frequencies and one for amplitudes), € is a user-selected matching threshold that ranges from
0 to 1, § is a radius parameter that controls (for a given point with a given reference frequency)
the frequency range around the reference where a match can be sought, and the LCSS ¢ operator
evaluates the match between paired points between the arrays. We utilize the python library
tslearn (Tavenard et al. 2020) to compute S between the two mHVSR curves across selected
frequency intervals.
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Figure 7 shows two HVSR curves (labeled as “ref” and “meas”) and lines between them
to illustrate how the LCSSs . operator functions. In both cases, matches between paired points are
evaluated. The pairing can occur vertically, as in the case of the green lines indicated in Figure 7
as € = 1, or it can occur across frequencies as indicated by the blue lines (¢ = 0.5). For a given
threshold, the algorithm looks for the optimal pairing to evaluate similarity. If the curves are
close together (overlayed) then all the points are perfectly paired; for this condition, LCSS, s will
return an integer representing the number of points that were matched between the two curves,
causing S to be unity per Eq. (1). As the number of paired points decreases, LCSS . decreases,
causing S to drop below unity. The degree to which pairings can consider points across
frequencies is controlled jointly by the € and § parameters, with pairings across frequencies
increasing as € and § decrease. We considered this feature of the LCSS; . metrics to be
advantageous relative to the other metrics, as one can select € and § for use with the algorithm
in order to align the algorithms outcomes to users preferences from visual assessment of the data.
The 6 parameter is referred to in literature as the Sakoe-Chiba (Sakoe and Chiba 1978) radius
(also called the warping window size). This radius influences how far in frequency space point
pairings can occur between curves, taking into account slight differences in the curves caused by
external factors (e.g., noise in time series data). Algorithm run time increases as § increases
because more frequencies need to be interrogated for potential matches. For the present study we
used a § = 10; as shown in Figure 7 for this value of §, matches across frequencies are made for
€ < 1 butnot for e = 1.

The matching threshold parameter € and range parameter § affect the LCSSs (A, B)
calculation as follows:
LCSSs (A, B,¢,5) =

0 A or B empty
1+ LCSSse(Arn—1, Brm—1) |A1i- Bij| < €&|Ayi- Byj| < €&li—jl< 6 )
max (LCSSs e (Ayn-1, B), LCSS5,e(A, Bym-1)) otherwise

In Eq. (2), A1.,—4 1s the array A but with its last row removed (hence its length is n-1), which is
referred to by Vlachos et al. (2002) as the head(A). B;.,,—1 1s similarly defined as array length m-
1. A;; and A, ; refer to the frequency and amplitude in array 4 for row i, which is an index
between 1 and the array length (B, ; and B, ; are similarly defined using index j). The second
line on the right side of Eq. 2 seeks matches by taking the absolute differences (in both frequency
and amplitude) between points in arrays 4 and B; if those differences are < €, then the LcSSs .
count increases by 1. If the absolute differences are > €, then the maximum is used (third line on
the right side of Eq. 2). The default value of € is 1, which matches points at the same
frequencies, as shown in Figure 7. Vlachos et al (2002) indicated that the determination of € is
application dependent, and a value of 1 indicates the curves are relatively similar. Selecting €
lower than 1, would allow the algorithm to search further along the curve to make a match, as
shown in Figure 7. For the present study we used € = 0.75.
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Figure 7. Comparison of two mean HVSR curves, showing the differences in LCSS paths for
two different matching thresholds. LCSS path position (x-axis) indicates the index value for
which HVSR amplitude is sampled, and corresponds to a specific frequency. The LCSS paths
identify the points used to derive similarity between curves.

Interpretation of Vertical Array Seismic Data

As noted in the Introduction, previous studies have evaluated the effectiveness of 1D
GRA using data from vertical array sites in Japan and California. Many of these validation
studies have found that the site response predicted by 1D GRA does not accurately capture
observed transfer functions from appreciable fractions of the vertical array sites. Several of the
validation studies investigated whether direct modeling of multidimensional effects such as wave
scattering (Thompson et al. 2012; de la Torre et al, 2022), non-vertical incidence (Thompson et
al. 2012), and laterally-varying soil/rock layers (Hallal and Cox 2020) improve site response
predictions at vertical array sites, with mixed results. For the purposes of the present study, we
retain the use of 1D GRA as the basis of comparison to empirical transfer functions.

Due to the potential for improved insights from the LCSSs . metric (Eq. 1), we have re-
assessed the compatibility of empirical transfer functions (ETF) from vertical array data and
theoretical transfer functions (TTF) from 1D GRA. Both ETFs and TTFs considered here are
taken from de la Torre et al. (2022) for the California vertical array sites considered in Afshari
and Stewart (2019).

In de la Torre et al. (2022), ETFs were computed as the ratio of the Fourier amplitude
spectrum (FAS) for the observed ground surface motion to the FAS for the downhole motion for
each event. For each frequency, the median and lognormal standard deviation were calculated
across the data for all events. These ETFs can be considered as the ratio of an outcropping
motion (from the surface) to a within motion (at depth). TTFs were computed using 1D GRA in
Opensees (McKenna 2011) with viscoelastic material properties to model the linear site
response, consistent with the weak ground motions considered for the ETF. TTFs can be derived
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using either within or outcropping representations of the input motion. Both the median ETF and
TTF were smoothed using Konno and Ohmachi smoothing (Konno and Ohmachi 1998) with a
smoothing bandwidth of 100.

We applied the procedure described in the previous section for evaluating correlations
between mHVSR curves to examine correlations between TTFs and ETFs. This was done for
different frequency intervals corresponding to modal frequencies in the TTF and ETF. Results for
all sites are summarized in Table 2 and example results for the same two sites considered
previously are shown in Figure 8. The mean mHVSR curves for the reference tests are also
presented in the figures, which will be discussed subsequently. TTFs based both on within- and
outcropping input motions are shown in Figure 8, although the fit assessments used only the
within TTF results, which are the theoretically correct choice for application of 1D GRA (Kwok
et al. 2007).

For site 2 (Benicia-Martinez South), as shown in Figure 8a, the ETF and TTF peaks
align. This suggests good correlation, which is confirmed by an LCSS § value of 0.76 (Table 2).
The alignment of peaks is less favorable for site 4 (El Centro-Meloland), which has S = 0.36.
Results for all sites are provided in Table 2. We interpret S > 0.6 as a good fit, which occurs for
53% of sites. We interpret S < 0.45 as poor fit, which occurs for 35% of sites. Values of S
between 0.45 and 0.6 are considered to have an intermediate ETF-TTF correlation, which occurs
for 12% of sites.

The variability column in Table 2 is based on the between-event standard deviation of ETFs
over the first frequency interval (denoted aj%zrr). For reference, we note that previous studies
(Thompson et al. 2012; Tao and Rathje 2020a) have used ojrzrr = 0.35 as a threshold value
distinguishing low and high variability, although for a different level of smoothing than that used
here. Based on that threshold, 42% of sites have high variability. Two sites experienced low
variability, but poor fit, and four sites experienced high variability, but a good fit.
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Table 2. Correlations of ETF and TTF and mHVSR based on LCSS metric as evaluated in this
study using first-model frequency interval. For mHVSR, the § values are averaged over all
considered distance intervals.

Station No. Station Name HVSR S Value' ETF-TTF S Value' ugm  Goodness-of-fit

2 Benicia-Martinez South 0.860 0.759 0.325 Good

3 Crockett-Carquinez 0.666 0.639 0.420 Good

4 El Cenfro-Meloland 0.679 0.358 0.282 Poor

7 Hollister 0.454 0.342 0.461 Poor

8 Hayward-San Mateo 0.953 0.670 0.343 Good

9 La Cienega 0.967 0.77 0.318 Good

10 Obregon Park 0.998 0.517 0.373 Intermediate
11 San Bemardino 0.961 0.722 0.379 Good

12 Vallejo-Hwy 37 0.940 0.441 0.468 Poor

13 Wildlife Liquefaction Array 0.979 0.72 0.228 Good

14 Antioch-San Joaquin S. 0.762 0.730 0.201 Good

15 Corona 0.500 0.421 0.341 Poor

16 Coronado East 0.989 0.72 0.362 Good

17 Coronado West 0.975 0.686 0.362 Good

18 Foster City-San Mateo 0.686 0.505 0.259 Intermediate
19 Hayward-580W 0.576 0.333 0.340 Poor
20 San Francsico Bay Bridge 0.370 0.448 0.308 Poor

1. Derived using first-mode frequency interval
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Figure 8. Comparison of empirical transfer function (ETF) with theoretical transfer functions
derived using within and outcropping representations of input motions: (a) site 2 results showing
generally good correlation and (b) site 4 results showing poor correlations.
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Relationship between GRA Effectiveness and mHVSR Correlation

The mHVSR correlation metrics can be examined from a number of perspectives to
evaluate their consistency with respect to frequency and separation distance. However, for this
paper, we focus solely on their relationship to GRA effectiveness, as represented in the prior
section.

Figure 9 compares S values derived for the first-mode frequency interval from the ETF-
TTF and the closest associated frequency interval in mHVSR, using values from Table 2. The
positive correlation between the S values supports the hypothesis that mHVSR spatial correlation
is predictive of 1D GRA effectiveness, as represented by ETF-TTF S values. In particular,
mHVSR S values > 0.8 correspond to S > 0.6 for ETF-TTF (indicating favorable effectiveness of
1D GRA) in 6 out of 8 cases (75%). At the other end of the scale, mnHVSR S values < 0.6
correspond to ETF-TTF § values < 0.45 in 5 of 5 cases (100%). As a result, we consider the
spatial variability of mHVSR measurements to have promise as an indicator for 1D GRA
effectiveness. Further research will refine these relationships, including data from additional sites
and investigation of their dependence on distance intervals.
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Figure 9. Relationship between S-values for first frequency interval in the ETF-TTF data and the
closest associated mHVSR frequency interval in mHVSR averaged over the radial distances
available from the mHVSR instrument arrays. Shaded region indicates a 95% confidence interval

for the trend. These correlations illustrate the predictive capacity of mHVSR spatial correlation
on 1D GRA effectiveness.

As part of assessing the relationship between mHV SR and site response as revealed by
the vertical arrays, it is useful to examine the relationships between the mean ETF and mean
mHVSR curves. Two examples of such comparisons are provided in Figure 8. In the case of site
4, the lowest frequency peaks are close to aligning, whereas for site 2 they do not (the lowest
mHVSR peak near 1 Hz is at a lower frequency). If the portion of the profile that controls site
response is included within the depth range of the vertical array, then reasonable alignment of
peaks is expected. This appears to be the case with site 4, which has an unusually deep vertical
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array (~ 195 m), even though the site is in a very deep basin that extends beyond the base depth
of the array. It is likely that the resonant frequency associated with the overall basin thickness is
lower than the lower-frequency limit of the mHVSR curve, which is not unusual (Ornelas et al.
2024). In the case of site 2, the base of the array is located in blue hard shale, which has a Vspr =
600 m/s (where DH signifies downhole sensor). Within the domain of the vertical array, the hard
shale does not have a significant impedance contrast, which likely occurs at greater depth, which
would explain the lower frequency resonances seen in the mHVSR curve for the site.

Conclusions

This study has demonstrated that microtremor horizontal-to-vertical spectral ratio
(mHVSR) spatial correlation may serve as an effective indicator for assessing the reliability of
1D GRA. Utilizing a dataset of 300 microtremor recordings from 17 vertical downhole array
sites across California, we investigated the spatial variability of mHVSR through three
correlation metrics: Longest Common Subsequence (LCSS), Pearson’s » Coefficient, and Mean
Absolute Error (MAE). Among these, we recommend LCSS as the preferred metric to
characterize spatial variability, due to its ability to more effectively represent analyst judgment.
Our findings revealed that 75% of the sites that exhibited a high degree of spatial correlation
from mHVSR using the LCSS metric in Eq. (1) (denoted S) had observed site responses from
vertical arrays that were well modelled by 1D GRA. Moreover, 100% of sites that exhibited a
low degree of spatial correlation in mHVSR were not well modelled by 1D GRA. The analyses
concentrated on frequency intervals encompassing low-frequency peaks in both the transfer
function and HVSR, with higher frequency peaks showing diminished correlation, likely
influenced by interference from cultural noise. This research presents a promising, cost-effective
approach for evaluating site spatial variability in the absence of more extensive, and costly
invasive site characterization data. Further investigations are needed to refine these relationships
using additional data and to explore their dependence on distance and frequency.
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